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Grounding lines

Schoof 2007

Bueler et. al. 2005

• ocean circulation is very
sensitive to grounding line
geometry, feedback

• current models are less than
first-order accurate at margins

• extremely high resolution needed
for qualitatively correct results
on Eulerian meshes

• non-shallow physics applies in
vicinity of grounding line
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(Schoof 2007)

Evolution of grounding
line location on 20, 15,
10, 7.5 and 2.5
kilometer meshes in one
horizontal dimension.
(Durand et al. 2009)
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Holt et al.

2006
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Non-Newtonian Stokes system: velocity u, pressure p

−∇ · (ηDu) +∇p− f = 0

∇ ·u = 0

Du = 1
2

(
∇u+ (∇u)T

)
γ(Du) = 1

2Du :Du

η(γ) = B(Θ, . . . )
(
ε+ γ

) p−2
2

p = 1 + 1
n ≈

4
3

T = 1− n⊗ n
with boundary conditions

(ηDu− p1) ·n =

{
0 free surface

−ρwzn ice-ocean interface

u = 0 frozen bed,Θ < Θ0

u ·n = gmelt(Tu, . . . )

T (ηDu− p1) ·n = gslip(Tu, . . . )

}
nonlinear slip,Θ ≥ Θ0

gslip(Tu) = βm(. . . )|Tu|m−1Tu

Navier m = 1, Weertman m ≈ 1
3 , Coulomb m = 0.
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Other critical equations
• Mesh motion: x

−∇ ·σ = 0

surface: (ẋ− u) ·n = qBL, Tσ ·n = 0

σ = µ
[
2Dw + (∇w)T∇w

]
+ λ tr(∇w)1

w = x− x0

• Heat transport: Θ (enthalpy)

∂

∂t
Θ + (u− ẋ) · ∇Θ

−∇ ·
[
κT (Θ)∇T (Θ)+κω∇ω(Θ) + qD(Θ)

]
−ηDu :Du = 0

• ALE advection
• Thermal diffusion

• Moisture diffusion/Darcy flow
• Strain heating

Note: κ(Θ) and qD(Θ) are very sensitive near Θ = Θ0

Summary of primal variables in DAE
u velocity algebraic
p pressure algebraic
x mesh location algebraic in domain, differential at surface
Θ enthalpy differential
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Stiff integrators

ẋ+ 50(x− cos t) = 0

• ẋ = λx

• R(hλ) = xn+1/xn
• A-stable: |R({<[z] ≤ 0})| ≤ 1

• L-stable: limz→∞R(z) = 0

1Hairer and Wanner, 1999
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Barriers

Dahlquist’s second barrier

An A-stable linear multistep method has order p ≤ 2.

Diagonally implicit Runge-Kutta

A DIRK evaluates the first stage to order q = 1.

Circumvent with general linear methods[
Y

Xn+1

]
=

[
A U
B V

] [
hẎ
Xn

]
• stage values Y = {y1, . . . , ys}
• Nordsieck vector passed between steps

X = {x1, . . . , xr} = {x, hẋ, h2ẍ, . . . }
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Special class: IRKS (inherent Runge-Kutta stability)2

• A-stable

• L-stable

• order p, stage order q, p = q = r − 1 = s− 1

• diagonally implicit

• Asymptotically correct error estimates for
present method and method of order p+ 1.

• Implemented in PETSc’s TSGL:
• implicit DAE form: f(t, x, ẋ) = 0
• orders p = 1, . . . , 5
• adaptive-order, adaptive-step controller
• plugin architecture for controllers
• make new methods available to the controller by giving their

tableau, error estimates computed automatically
• solve f(t, x, x0 + αx) = 0 with SNES

2Butcher, Jackiewicz, Wright 2007, On error propagation in general linear
methods for ordinary differential equations
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Why do we want high order methods?

• high accuracy with reasonable computational effort

• qualitatively correct answers over long time scales

• stronger conservation statements

• better performance at high aspect ratio
• Quintic velocities permit a space that strongly enforces
∇ ·u = 0 with inf-sup constant independent of aspect ratio.

3Shu 2001
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High order methods are expensive

Order p:

• element matrices have p6 nonzeros

• cost O(p7)−O(p9) to assemble

• Very expensive to precondition and solve with

• High order methods must be competitive per degree of
freedom in order to be practical



Motivation Time discretization Spatial discretization Preconditioning Examples

High order methods are expensive

Order p:

• element matrices have p6 nonzeros

• cost O(p7)−O(p9) to assemble

• Very expensive to precondition and solve with

• High order methods must be competitive per degree of
freedom in order to be practical



Motivation Time discretization Spatial discretization Preconditioning Examples

Nodal hp-version finite element methods

1D reference element

• Lagrange interpolants on
Legendre-Gauss-Lobatto points

• Quadrature R̂, weights Ŵ

• Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ ⊗ Ŵ ⊗ Ŵ
B̂ = B̂ ⊗ B̂ ⊗ B̂

D̂0 = D̂ ⊗ B̂ ⊗ B̂
D̂1 = B̂ ⊗ D̂ ⊗ B̂
D̂2 = B̂ ⊗ B̂ ⊗ D̂

These tensor product operations
are very efficient, 10–20+ times
faster than sparse mat-vec
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Operations on physical elements

Mapping to physical space

xe : K̂ → Ke, Je
ij = ∂xei/∂x̂j , (Je)−1 = ∂x̂/∂xe

Element operations in physical space

Be = B̂ W e = ŴΛ(|Je(r)|)

De
i = Λ

(
∂x̂0

∂xi

)
D̂0 + Λ

(
∂x̂1

∂xi

)
D̂1 + Λ

(
∂x̂2

∂xi

)
D̂2

(De
i )

T = D̂T
0 Λ

(
∂x̂0

∂xi

)
+ D̂T

1 Λ

(
∂x̂1

∂xi

)
+ D̂T

2 Λ

(
∂x̂2

∂xi

)
Global problem is defined by assembly

E = [Ee]
where Ee maps global dofs to element dofs
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Residuals

• Continuous weak form: find u ∈ VD such that∫
Ω
v · f0(u,∇u) +∇v :f1(u,∇u) = 0 ∀v ∈ V0

• Fully discrete form∑
e

ETe
[
(Be)TW eΛ(f0(ue,∇ue))

+

2∑
i=0

(De
i )

TW eΛ(f1(ue,∇ue))
]

= 0

with ue = BeEeu and ∇ue = {De
i Eeu}2i=0.

1. Get element dofs with Ee, evaluate u,∇u at quadrature points

2. Apply the pointwise operations f0, f1

3. Weight the residuals with W e

4. Contribute weighted residuals via ETe (Be)T and ETe (De)T
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Jacobians

• Continuous weak form: find u ∈ VD such that

vTF (u) ∼
∫

Ω
v · f0(u,∇u) +∇v :f1(u,∇u) = 0 ∀v ∈ V0

• Weak form of the Jacobian

vTJ(w)u ∼
∫

Ω

[
vT ∇vT

] [f0,0 f0,1

f1,0 f1,1

] [
u
∇u

]

[fi,j ] =


∂f0

∂u

∂f0

∂∇u
∂f1

∂u

∂f1

∂∇u

 (w,∇w)

• Frequently much of [fi,j ] is computed while evaluating fi.
• Inexpensive taping for full-accuracy matrix-free Jacobian
• Code reuse in preconditioner assembly

• The terms in [fi,j ] are easy to compute with symbolic math.
Possible to automatically generate code.
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“Dual order”

• any system of equations

• robust on non-affine elements

• robust to variable coefficients

• leverages existing software

• requires very little coding

• weak (bounded) p-dependence

Changing the inner product

Consider the problem Ax = b discretized with high-order elements.
The consistent formulation of this problem with low-order elements
is Âx = M̂M−1b.

(Orszag 1980, Deville & Mund 1990, Kim 2007)
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What code do you need to write?

Conventional FEM

• Residuals vTF (u)
for each quadrature point:

sum basis functions: u,∇u
evaluate f0, f1
weight residuals against v,∇v

• Assembly J(w)
for each quadrature point:

sum basis functions: w,∇w
evaluate [fi,j ]
for each test function:

for each trial function:

sum into Ke[test, trial]

insert Ke into global matrix

Dual-order hp-FEM

• Residuals vTF (u)
evaluate u,∇u at quad pts

evaluate f0, f1, tape for [fi,j ]
weight residuals and transpose

• Matrix-free vTJ(w)u
evaluate u,∇u at quad points

restore [fi,j ](w) from tape

weight residuals

[ v
∇v ]T

[
f0,0 f0,1
f1,0 f1,1

]
[ u
∇u ]

transpose

• Assemble one or more matrices
for preconditioning
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Multiphysics

[
A B
C D

] [
x
y

]
=

[
f
g

]
• Relaxation [

A
C D

]
• Gauss-Seidel inspired, easy to implement
• works when fields are loosely coupled

• Factorization[
1

CA−1 1

] [
A B

S

]
, S = D − CA−1B

• robust (exact factorization), can often drop lower block
• how to precondition S which is usually dense?

• interpret as differential operators, use approximate commutators
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Power-law Stokes

• Strong form: Find (u, p) ∈ VD × P such that

−∇ · (ηDu) +∇p− f = 0

∇ ·u = 0

where

Du = 1
2

(
∇u+ (∇u)T

)
γ(Du) = 1

2Du :Du

η(γ) = B(Θ, . . . )
(
ε+ γ

) p−2
2 , p = 1 + 1

n ≈
4
3
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Power-law Stokes

Weak form of the Newton step

Find (u, p) such that∫
Ω
Dv :

[
η1 + η′Dw ⊗Dw

]
:Du

− p∇ ·v − q∇ ·u = −v ·F (w) ∀(v, q)

Matrix form [
A(w) BT

B

](
u
p

)
= −

(
Fu(w)

0

)
Block factorization[

A BT

B

]
=

[
1

BA−1 1

] [
A BT

S

]
=

[
A
B S

] [
1 A−1BT

1

]
where the Schur complement is

S = −BA−1BT .
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Approximate commutators4

• Scaled mass matrix (Burstedde et al, Grinevich & Olshanskii)

−S ∼ div(div ηD)−1∇ ≈ div∇(div η∇)−1

≈ div∇(div∇)−1η−1 ≈ η−1

• Least squares commutator (Elman et al, May & Moresi)

−S ∼ (div∇)
[

div(div ηD)∇
]−1

(div∇)

• Shallow water, α ∝ 1/∆t, only retaining the dominant terms

S ∼ α− div(α−1gh∇)

This is a parabolic operator so this case is easier (no need for
approximate commutators).

4Elman & Tuminaro 2009, Boundary conditions in approximate commutator
preconditioners for the Navier-Stokes equations.
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Power-law Stokes Scaling

Only assembles Q1 matrices, ML for elliptic pieces
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ALE form
After semidiscretization in time (α ∝ 1/∆t) we have a Jacobian

AII AIΓ

αMΓΓ −NΓΓ

GII GΓI BII BIΓ CT
I DI

GIΓ GΓΓ BΓI BΓΓ CT
Γ DΓ

GIp GΓp CI CΓ

αEI αEΓ FI FΓ αMΘ + J


• pseudo-elasticity for mesh motion

• (ẋ− u) ·n = accumulution

• “just” geometry

• Stokes problem

• temperature dependence of rheology

• convective terms and strain heating in heat transport

• heat diffusion
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Outlook

• High order spatial and temporal accuracy is desirable and
feasible for the grounding line dynamics problem.

• High order elements are effective at utilizing modern hardware.

• Coupling between multiple domains is hard.

• Smooth manufactured solutions are not enough to study solver
performance.

• Need good software to combine relaxation for loosely coupled
processes and factorization for stiff/indefinite coupling.

Tools

• PETSc http://mcs.anl.gov/petsc

• ML, Hypre, MUMPS

• ITAPS http://itaps.org

• MOAB, CGM, Lasso

http://mcs.anl.gov/petsc
http://itaps.org
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