# Implicit integration of 3D ice sheet flow using hybrid factorization/relaxation block preconditioning 

Jed Brown

Copper Mountain 2010-04-08

## Antarctic Ocean-Ice Interaction



Bindschadler 2008

## Grounding lines



Schoof 2007


- ocean circulation is very sensitive to grounding line geometry, feedback
- current models are less than first-order accurate at margins
- extremely high resolution needed for qualitatively correct results on Eulerian meshes
- non-shallow physics applies in vicinity of grounding line


(Schoof 2007)

Evolution of grounding line location on 20,15 , 10, 7.5 and 2.5
kilometer meshes in one horizontal dimension.
(Durand et al. 2009)


Holt et al.

Non-Newtonian Stokes system: velocity $\boldsymbol{u}$, pressure $p$

$$
\begin{aligned}
D \boldsymbol{u} & =\frac{1}{2}\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right) \\
\gamma(D \boldsymbol{u}) & =\frac{1}{2} D \boldsymbol{u}: D \boldsymbol{u} \\
\eta(\gamma) & =B(\Theta, \ldots)(\epsilon+\gamma)^{\frac{p-2}{2}} \\
\mathfrak{p} & =1+\frac{1}{n} \approx \frac{4}{3} \\
T & =\mathbf{1}-\boldsymbol{n} \otimes \boldsymbol{n}
\end{aligned}
$$

with boundary conditions

$$
\left.\left.\begin{array}{c}
(\eta D \boldsymbol{u}-p \mathbf{1}) \cdot \boldsymbol{n}= \begin{cases}\mathbf{0} & \text { free surface } \\
-\rho_{w} z \boldsymbol{n} & \text { ice-ocean interface }\end{cases} \\
\boldsymbol{u}=\mathbf{0} \\
\text { frozen bed, } \Theta<\Theta_{0}
\end{array}\right\} \begin{array}{c}
\boldsymbol{u} \cdot \boldsymbol{n}=\boldsymbol{g}_{\text {melte }}(T \boldsymbol{u}, \ldots) \\
T(\eta D \boldsymbol{u}-p \mathbf{1}) \cdot \boldsymbol{n}=\boldsymbol{g}_{\text {slip }}(T \boldsymbol{u}, \ldots)
\end{array}\right\} \text { nonlinear slip, } \Theta \geq \Theta_{0} \begin{gathered}
\boldsymbol{g}_{\text {slip }}(T \boldsymbol{u})=\beta_{\mathfrak{m}}(\ldots)|T \boldsymbol{u}|^{\mathfrak{m}-1} T \boldsymbol{u}
\end{gathered}
$$

Navier $\mathfrak{m}=1, \quad$ Weertman $\mathfrak{m} \approx \frac{1}{3}, \quad$ Coulomb $\mathfrak{m}=0$.

## Other critical equations

- Mesh motion: $\boldsymbol{x}$

$$
-\nabla \cdot \boldsymbol{\sigma}=0
$$

$$
\boldsymbol{\sigma}=\mu\left[2 D \boldsymbol{w}+(\nabla \boldsymbol{w})^{T} \nabla \boldsymbol{w}\right]+\lambda \operatorname{tr}(\nabla \boldsymbol{w}) \mathbf{1}
$$

surface: $(\dot{\boldsymbol{x}}-\boldsymbol{u}) \cdot \boldsymbol{n}=q_{B L}, T \boldsymbol{\sigma} \cdot \boldsymbol{n}=0$

$$
\boldsymbol{w}=\boldsymbol{x}-\boldsymbol{x}_{0}
$$

- Heat transport: $\Theta$ (enthalpy)

$$
\begin{aligned}
& \frac{\partial}{\partial t} \Theta+(\boldsymbol{u}-\dot{\boldsymbol{x}}) \cdot \nabla \Theta \\
& -\nabla \cdot\left[\kappa_{T}(\Theta) \nabla T(\Theta)+\kappa_{\omega} \nabla \omega(\Theta)+\boldsymbol{q}_{D}(\Theta)\right]-\eta D \boldsymbol{u}: D \boldsymbol{u}=0 \\
& \text { - ALE advection } \\
& \text { - Thermal diffusion } \\
& \text { - Moisture diffusion/Darcy flow } \\
& \text { - Strain heating } \\
& \text { Note: } \kappa(\Theta) \text { and } \boldsymbol{q}_{D}(\Theta) \text { are very sensitive near } \Theta=\Theta_{0} \\
& \text { Summary of primal variables in DAE } \\
& x \text { mesh location } \\
& \text { algebraic } \\
& \text { algebraic } \\
& \text { algebraic in domain, differential at surface } \\
& \text { differential }
\end{aligned}
$$

## Stiff integrators



$$
\dot{x}+50(x-\cos t)=0
$$

- $\dot{x}=\lambda x$
- $\mathcal{R}(h \lambda)=x^{n+1} / x^{n}$
- $A$-stable: $|\mathcal{R}(\{\Re[z] \leq 0\})| \leq 1$
- $L$-stable: $\lim _{z \rightarrow \infty} \mathcal{R}(z)=0$


## Barriers

Dahlquist's second barrier
An $A$-stable linear multistep method has order $p \leq 2$.
Diagonally implicit Runge-Kutta
A DIRK evaluates the first stage to order $q=1$.
Circumvent with general linear methods

$$
\left[\begin{array}{c}
Y \\
X^{n+1}
\end{array}\right]=\left[\begin{array}{ll}
A & U \\
B & V
\end{array}\right]\left[\begin{array}{c}
h \dot{Y} \\
X^{n}
\end{array}\right]
$$

- stage values $Y=\left\{y_{1}, \ldots, y_{s}\right\}$
- Nordsieck vector passed between steps

$$
X=\left\{x_{1}, \ldots, x_{r}\right\}=\left\{x, h \dot{x}, h^{2} \ddot{x}, \ldots\right\}
$$

## Special class: IRKS (inherent Runge-Kutta stability) ${ }^{2}$

- $A$-stable
- $L$-stable
- order $p$, stage order $q, p=q=r-1=s-1$
- diagonally implicit
- Asymptotically correct error estimates for present method and method of order $p+1$.
- Implemented in PETSc's TSGL:
- implicit DAE form: $f(t, x, \dot{x})=0$
- orders $p=1, \ldots, 5$
- adaptive-order, adaptive-step controller
- plugin architecture for controllers
- make new methods available to the controller by giving their tableau, error estimates computed automatically
- solve $f\left(t, x, x_{0}+\alpha x\right)=0$ with SNES
${ }^{2}$ Butcher, Jackiewicz, Wright 2007, On error propagation in general linear methods for ordinary differential equations


## Why do we want high order methods?



- high accuracy with reasonable computational effort
- qualitatively correct answers over long time scales
- stronger conservation statements
- better performance at high aspect ratio
- Quintic velocities permit a space that strongly enforces $\nabla \cdot \boldsymbol{u}=0$ with inf-sup constant independent of aspect ratio.


## High order methods are expensive



Order $p$ :

- element matrices have $p^{6}$ nonzeros
- cost $\mathcal{O}\left(p^{7}\right)-\mathcal{O}\left(p^{9}\right)$ to assemble
- Very expensive to precondition and solve with


## High order methods are expensive



Order $p$ :

- element matrices have $p^{6}$ nonzeros
- cost $\mathcal{O}\left(p^{7}\right)-\mathcal{O}\left(p^{9}\right)$ to assemble
- Very expensive to precondition and solve with
- High order methods must be competitive per degree of freedom in order to be practical


## Nodal $h p$-version finite element methods




1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature $\hat{R}$, weights $\hat{W}$
- Evaluation: $\hat{B}, \hat{D}$

3D reference element

$$
\hat{\boldsymbol{W}}=\hat{W} \otimes \hat{W} \otimes \hat{W}
$$

$$
\hat{\boldsymbol{D}}_{0}=\hat{D} \otimes \hat{B} \otimes \hat{B}
$$

$$
\hat{D}_{1}=\hat{B} \otimes \hat{D} \otimes \hat{B}
$$

$$
\hat{D}_{2}=\hat{B} \otimes \hat{B} \otimes \hat{D}
$$

## Nodal $h p$-version finite element methods




1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature $\hat{R}$, weights $\hat{W}$
- Evaluation: $\hat{B}, \hat{D}$

3D reference element

$$
\hat{\boldsymbol{W}}=\hat{W} \otimes \hat{W} \otimes \hat{W}
$$

$$
\hat{\boldsymbol{D}}_{0}=\hat{D} \otimes \hat{B} \otimes \hat{B}
$$

$$
\hat{\boldsymbol{D}}_{1}=\hat{B} \otimes \hat{D} \otimes \hat{B}
$$

$$
\hat{\boldsymbol{D}}_{2}=\hat{B} \otimes \hat{B} \otimes \hat{D}
$$

These tensor product operations are very efficient, $10-20+$ times faster than sparse mat-vec

## Operations on physical elements

Mapping to physical space

$$
x^{e}: \hat{K} \rightarrow K^{e}, \quad J_{i j}^{e}=\partial x_{i}^{e} / \partial \hat{x}_{j}, \quad\left(J^{e}\right)^{-1}=\partial \hat{x} / \partial x^{e}
$$

Element operations in physical space

$$
\left.\begin{array}{rl}
\boldsymbol{B}^{e} & =\hat{\boldsymbol{B}} \\
\boldsymbol{D}_{i}^{e} & =\Lambda\left(\frac{\partial \hat{x}_{0}}{\partial x_{i}}\right) \hat{\boldsymbol{D}}_{0}+\Lambda\left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right) \hat{\boldsymbol{D}}_{1}+\Lambda\left(\left|J^{e}(\boldsymbol{r})\right|\right) \\
\left(\boldsymbol{D}_{i}^{e}\right)^{T} & =\hat{\boldsymbol{D}}_{0}^{T} \Lambda\left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right) \hat{\boldsymbol{D}}_{2} \\
\partial x_{i}
\end{array}\right)+\hat{\boldsymbol{D}}_{1}^{T} \Lambda\left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right)+\hat{\boldsymbol{D}}_{2}^{T} \Lambda\left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right) \text { }
$$

Global problem is defined by assembly

$$
\mathcal{E}=\left[\mathcal{E}^{e}\right]
$$

where $\mathcal{E}^{e}$ maps global dofs to element dofs

## Residuals

- Continuous weak form: find $u \in \mathcal{V}_{D}$ such that

$$
\int_{\Omega} v \cdot f_{0}(u, \nabla u)+\nabla v: f_{1}(u, \nabla u)=0 \quad \forall v \in \mathcal{V}_{0}
$$

- Fully discrete form

$$
\begin{aligned}
& \sum_{e} \mathcal{E}_{e}^{T}\left[\left(\boldsymbol{B}^{e}\right)^{T} \boldsymbol{W}^{e} \Lambda\left(f_{0}\left(u^{e}, \nabla u^{e}\right)\right)\right. \\
&\left.+\sum_{i=0}^{2}\left(\boldsymbol{D}_{i}^{e}\right)^{T} \boldsymbol{W}^{e} \Lambda\left(f_{1}\left(u^{e}, \nabla u^{e}\right)\right)\right]=\mathbf{0}
\end{aligned}
$$

with $u^{e}=\boldsymbol{B}^{e} \mathcal{E}^{e} u$ and $\nabla u^{e}=\left\{\boldsymbol{D}_{i}^{e} \mathcal{E}^{e} u\right\}_{i=0}^{2}$.

1. Get element dofs with $\mathcal{E}^{e}$, evaluate $u, \nabla u$ at quadrature points
2. Apply the pointwise operations $f_{0}, f_{1}$
3. Weight the residuals with $\boldsymbol{W}^{e}$
4. Contribute weighted residuals via $\mathcal{E}_{e}^{T}\left(\boldsymbol{B}^{e}\right)^{T}$ and $\mathcal{E}_{e}^{T}\left(\boldsymbol{D}^{e}\right)^{T}$

## Jacobians

- Continuous weak form: find $u \in \mathcal{V}_{D}$ such that

$$
v^{T} F(u) \sim \int_{\Omega} v \cdot f_{0}(u, \nabla u)+\nabla v: f_{1}(u, \nabla u)=0 \quad \forall v \in \mathcal{V}_{0}
$$

- Weak form of the Jacobian

$$
\begin{gathered}
v^{T} J(w) u \sim \int_{\Omega}\left[\begin{array}{ll}
v^{T} & \nabla v^{T}
\end{array}\right]\left[\begin{array}{ll}
f_{0,0} & f_{0,1} \\
f_{1,0} & f_{1,1}
\end{array}\right]\left[\begin{array}{c}
u \\
\nabla u
\end{array}\right] \\
{\left[f_{i, j}\right]=\left[\begin{array}{cc}
\frac{\partial f_{0}}{\partial u} & \frac{\partial f_{0}}{\partial \nabla u} \\
\frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial \nabla u}
\end{array}\right](w, \nabla w)}
\end{gathered}
$$

- Frequently much of $\left[f_{i, j}\right]$ is computed while evaluating $f_{i}$.
- Inexpensive taping for full-accuracy matrix-free Jacobian
- Code reuse in preconditioner assembly
- The terms in $\left[f_{i, j}\right]$ are easy to compute with symbolic math. Possible to automatically generate code.


## "Dual order"



- any system of equations
- robust on non-affine elements
- robust to variable coefficients
- leverages existing software
- requires very little coding
- weak (bounded) p-dependence

Changing the inner product
Consider the problem $A x=b$ discretized with high-order elements. The consistent formulation of this problem with low-order elements is $\hat{A} x=\hat{M} M^{-1} b$.
(Orszag 1980, Deville \& Mund 1990, Kim 2007)

## What code do you need to write?

## Conventional FEM

- Residuals $v^{T} F(u)$ for each quadrature point:
sum basis functions: $u, \nabla u$ evaluate $f_{0}, f_{1}$
weight residuals against $v, \nabla v$
- Assembly $J(w)$
for each quadrature point:
sum basis functions: $w, \nabla w$
evaluate $\left[f_{i, j}\right]$
for each test function:
for each trial function: sum into $K^{e}$ [test,trial]
insert $K^{e}$ into global matrix


## Dual-order $h p$-FEM

- Residuals $v^{T} F(u)$ evaluate $u, \nabla u$ at quad pts evaluate $f_{0}, f_{1}$, tape for $\left[f_{i, j}\right]$ weight residuals and transpose
- Matrix-free $v^{T} J(w) u$ evaluate $u, \nabla u$ at quad points restore $\left[f_{i, j}\right](w)$ from tape weight residuals

$$
[\stackrel{v}{\nabla v}]^{T}\left[\begin{array}{ll}
f_{0,0} & f_{0,1} \\
f_{1,0} & f_{1,1}
\end{array}\right][\stackrel{u}{\nabla u}]
$$ transpose

- Assemble one or more matrices for preconditioning


## Multiphysics

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Relaxation

$$
\left[\begin{array}{ll}
A & \\
C & D
\end{array}\right]
$$

- Gauss-Seidel inspired, easy to implement
- works when fields are loosely coupled
- Factorization

$$
\left[\begin{array}{cc}
1 & \\
C A^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A & B \\
& S
\end{array}\right], \quad S=D-C A^{-1} B
$$

- robust (exact factorization), can often drop lower block
- how to precondition $S$ which is usually dense?
- interpret as differential operators, use approximate commutators


## Power-law Stokes

- Strong form: Find $(\boldsymbol{u}, p) \in \mathcal{V}_{D} \times \mathcal{P}$ such that

$$
\begin{aligned}
-\nabla \cdot(\eta D \boldsymbol{u})+\nabla p-\boldsymbol{f} & =0 \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

where

$$
\begin{aligned}
D \boldsymbol{u} & =\frac{1}{2}\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right) \\
\gamma(D \boldsymbol{u}) & =\frac{1}{2} D \boldsymbol{u}: D \boldsymbol{u} \\
\eta(\gamma) & =B(\Theta, \ldots)(\epsilon+\gamma)^{\frac{\mathfrak{p}-2}{2}}, \quad \mathfrak{p}=1+\frac{1}{\mathfrak{n}} \approx \frac{4}{3}
\end{aligned}
$$

## Power-law Stokes

Weak form of the Newton step
Find ( $\boldsymbol{u}, p$ ) such that

$$
\begin{aligned}
\int_{\Omega} D \boldsymbol{v} & {\left[\eta \boldsymbol{1}+\eta^{\prime} D \boldsymbol{w} \otimes D \boldsymbol{w}\right]: D \boldsymbol{u} } \\
& -p \nabla \cdot \boldsymbol{v}-q \nabla \cdot \boldsymbol{u}=-v \cdot F(\boldsymbol{w}) \quad \forall(\boldsymbol{v}, q)
\end{aligned}
$$

Matrix form

$$
\left[\begin{array}{cc}
A(\boldsymbol{w}) & B^{T} \\
B &
\end{array}\right]\binom{u}{p}=-\binom{F_{u}(\boldsymbol{w})}{0}
$$

Block factorization

$$
\left[\begin{array}{cc}
A & B^{T} \\
B &
\end{array}\right]=\left[\begin{array}{cc}
1 & \\
B A^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
& S
\end{array}\right]=\left[\begin{array}{cc}
A & \\
B & S
\end{array}\right]\left[\begin{array}{cc}
1 & A^{-1} B^{T} \\
& 1
\end{array}\right]
$$

where the Schur complement is

$$
S=-B A^{-1} B^{T}
$$

## Approximate commutators ${ }^{4}$

- Scaled mass matrix (Burstedde et al, Grinevich \& Olshanskii)

$$
\begin{aligned}
-S & \sim \operatorname{div}(\operatorname{div} \eta D)^{-1} \nabla \approx \operatorname{div} \nabla(\operatorname{div} \eta \nabla)^{-1} \\
& \approx \operatorname{div} \nabla(\operatorname{div} \nabla)^{-1} \eta^{-1} \approx \eta^{-1}
\end{aligned}
$$

- Least squares commutator (Elman et al, May \& Moresi)

$$
-S \sim(\operatorname{div} \nabla)[\operatorname{div}(\operatorname{div} \eta D) \nabla]^{-1}(\operatorname{div} \nabla)
$$

- Shallow water, $\alpha \propto 1 / \Delta t$, only retaining the dominant terms

$$
S \sim \alpha-\operatorname{div}\left(\alpha^{-1} g h \nabla\right)
$$

This is a parabolic operator so this case is easier (no need for approximate commutators).

[^0]
## Power-law Stokes Scaling



Only assembles $Q_{1}$ matrices, ML for elliptic pieces

## ALE form

After semidiscretization in time $(\alpha \propto 1 / \Delta t)$ we have a Jacobian

$$
\left[\begin{array}{cccccc}
A_{I I} & A_{I \Gamma} & & & & \\
& \alpha M_{\Gamma \Gamma} & & -N_{\Gamma \Gamma} & & \\
G_{I I} & G_{\Gamma I} & B_{I I} & B_{I \Gamma} & C_{I}^{T} & D_{I} \\
G_{I \Gamma} & G_{\Gamma \Gamma} & B_{\Gamma I} & B_{\Gamma \Gamma} & C_{\Gamma}^{T} & D_{\Gamma} \\
G_{I p} & G_{\Gamma p} & C_{I} & C_{\Gamma} & & \\
\alpha E_{I} & \alpha E_{\Gamma} & F_{I} & F_{\Gamma} & & \alpha M_{\Theta}+J
\end{array}\right]
$$

- pseudo-elasticity for mesh motion
- $(\dot{x}-\boldsymbol{u}) \cdot \boldsymbol{n}=$ accumulution
- "just" geometry
- Stokes problem
- temperature dependence of rheology
- convective terms and strain heating in heat transport
- heat diffusion


## Outlook

- High order spatial and temporal accuracy is desirable and feasible for the grounding line dynamics problem.
- High order elements are effective at utilizing modern hardware.
- Coupling between multiple domains is hard.
- Smooth manufactured solutions are not enough to study solver performance.
- Need good software to combine relaxation for loosely coupled processes and factorization for stiff/indefinite coupling.


## Tools

- PETSc http://mcs.anl.gov/petsc
- ML, Hypre, MUMPS
- ITAPS http://itaps.org
- MOAB, CGM, Lasso


[^0]:    ${ }^{4}$ Elman \& Tuminaro 2009, Boundary conditions in approximate commutator preconditioners for the Navier-Stokes equations.

