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Why do we need 3D Stokes?
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Non-Newtonian Stokes system
• Strong form: Find (u, p) ∈ VD × P such that

−∇ · (ηDu) +∇p− f = 0
∇ ·u = 0

where
Du = 1

2

(
∇u + (∇u)T

)
γ(Du) = 1

2Du :Du

η(γ) = B(Θ, . . . )
(
ε+ γ

) p−2
2 , p = 1 + 1

n ≈
4
3

with boundary conditions

(Du− p1) ·n =

{
0 free surface

−ρwzn ice-ocean interface

u = 0 frozen bed,Θ < Θ0

u ·n = gmelt(Tu, . . . )
T (Du− p1) ·n = gslip(Tu, . . . )

}
nonlinear slip,Θ ≥ Θ0
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Other forms

• Minimization form: Find u ∈ VD which minimizes

I(u) =
∫

Ω
|Du|p − f ·u

subject to

∇ ·u = 0

• Weak form: Find (u, p) ∈ VD × P such that∫
Ω
ηDv :Du− p∇ ·v − q∇ ·u− f ·v

−
∫

∂Ω
g(Tu) ·v = 0 ∀(v, q) ∈ V0 × P

• Slip
gslip(Tu) = βm(. . . )|Tu|m−1Tu

Navier m = 1, Weertman m ≈ 1
3 , Coulomb m = 0.
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Newton iteration

• Standard form of a nonlinear system

F (x) = 0

• Iteration

Solve: J(xn)sn = −F (xn)

Update: xn+1 ← xn + sn

Stokes problem

F (u, p) ∼
∫

Ω
ηDv :Du− p∇ ·v − q∇ ·u− f ·v = 0 ∀(v, q)

[ v
q ]T J(w) [ u

p ] ∼
∫

Ω
(Dv)T

[
η1 + η′Dw ⊗Dw

]
Du

− p∇ ·v − q∇ ·u

J(w) =
[
A(w) BT

B

]
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Matrices and Preconditioners

Definition (Matrix)

A matrix is a linear transformation between
finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it’s action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)

A preconditioner P is a method for constructing a matrix (just a
linear function, not assembled!) P−1 = P(Ĵ) using information Ĵ ,
such that P−1J (or JP−1) has favorable spectral properties.

Left preconditioning in a Krylov iteration

(P−1J)x = P−1b

{P−1b, (P−1J)P−1b, (P−1J)2P−1b, . . . }
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Normal preconditioners fail for indefinite problems
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Stokes

Weak form of the Newton step

Find (u, p) such that∫
Ω

(Dv)T
[
η1 + η′Dw ⊗Dw

]
Du

− p∇ ·v − q∇ ·u = −v ·F (w) ∀(v, q)

Matrix [
A(w) BT

B

](
u
p

)
= −

(
Fu(w)

0

)

Block factorization[
A BT

B

]
=
[

1
BA−1 1

] [
A BT

S

]
=
[
A
B S

] [
1 A−1BT

1

]
where the Schur complement is

S = −BA−1BT .
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Properties of the Schur complement

Block factorization

[
A BT

B

]
=
[

1
BA−1 1

] [
A BT

S

]
=
[
A
B S

] [
1 A−1BT

1

]
where

S = −BA−1BT .

• S is symmetric negative definite if A is SPD and B has full
rank (discrete inf-sup condition)

• S is dense

• We only need to multiply B,BT with vectors.

• We need preconditioners for A and S.

• Any definite preconditioner can be used for A.

• It’s not obvious how to precondition S, more on that later.
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Reduced factorizations are sufficient

Theorem (GMRES convergence)

GMRES applied to
Kx = b

converges in n steps for all right hand sides if the minimal
polynomial of K has degree n.
(There exists a polynomial πn such that πn(K) = 0 and
πn(0) = 1.)

A lower-triangular preconditioner

Left precondition J :

K = P−1J =
[
A
B S

]−1 [
A BT

B

]
=
[

A−1

−S−1BA−1 S−1

] [
A BT

B

]
=
[
1 A−1BT

1

]
Since (K − 1)2 = 0, GMRES converges in at most 2 steps.
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Preserving symmetry for MINRES

P must be SPD

P−1 =
[
A
−S

]−1

K = P−1J =
[
A−1

−S−1

] [
A BT

B

]
=
[

1 A−1BT

−S−1B

]
(
K − 1

2

)2

=
[

1
4 −A

−1BTS−1B
5
4

]
(
K − 1

2

)2

− 1
4

=
[
−A−1BTS−1B

1

]
Now Q = −A−1BTS−1B is a projector (Q2 = Q) so[(

K − 1
2

)2

− 1
4

]2

=
(
K − 1

2

)2

− 1
4

Rearranging, K(K − 1)(K2 −K − 1) = 0. MINRES converges in
at most 3 iterations.
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Preconitioning the Schur complement

• S = −BA−1BT is dense so we can’t form it, we need S−1.

Physics-based commutator: anisotropic pressure diffusion

vTA(w)u ∼
∫

(Dv)T
[
η1 + η′Dw ⊗Dw

]
Du

• We would like to find an operator Ap such that

−S = BA−1BT ≈ BBTA−1
p =: PS

so that
P−1

S = Ap(BBT )−1

• Note
BBT ∼ (−∇ · )∇ = −∆

corresponds to a Laplacian in the pressure space (multigrid).

• If η′,∇η � 1 then Ap ∼ −η∆ so P−1
S = η1



Introduction JFNK Indefinite Schur Alternatives

Least squares commutator

• Schur complement

S = −BA−1BT

Suppose B is square and nonsingular. Then

S−1 = −B−TAB−1.

B is not square, replace B−1 with Moore-Penrose pseudoinverse

B† = BT (BBT )−1, (BT )† = (BBT )−1B.

Then
P−1

S = −(BBT )−1BABT (BBT )−1.

• Requires 2 Poisson preconditioners for (BBT )−1 per iteration

• Better with scaling, from mass matrices and effective viscosity
(Elman et al. 2006, May & Moresi 2008)
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Unsteady Navier-Stokes

Strong form

J(w)
[
u
p

]
∼
{
ρ(αu + w · ∇u + u · ∇w)− η∇2u +∇p = −F (w)

∇ ·u = 0

Matrix form[
A(w) BT

B

]
=
[

1
BA−1 1

] [
A BT

S

]
S = −BA−1BT

Define A(w) in pressure space

• Want PS = (BBT )A−1
p ≈ BA−1BT , P−1

S = Ap(BBT )−1

• Ap ∼ ρ
(
αp+ w · ∇p+ p tr(∇w)

)
− η∇2p

• p tr(∇w) term is questionable, not needed for Picard

• Almost mesh-independent, weak Reynolds number dependence

(Silvester, Elman, Kay, Wathen. Efficient preconditioning of the linearized

Navier-Stokes equations for incompressible flow. 2001) (Elman et al. 2005-2008)
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Artifical compressibility

[
A BT

B −C

]
=
[
1 −BTC−1

1

] [
S
B −C

]
where

S = A+BTC−1B.

• C = εMp corresponds to almost incompressible elasticity

• BTC−1B ∼ ε−1∇(∇ ·u)
• Must precondition grad-div added system S which becomes

singular as ε→ 0
• Some results show weaker Reynolds number dependence than

former options

(Dohrmann and others. 2006,2007)
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Unsplit schemes

Multigrid
• discretization-dependent smoothers and interpolation

Overlapping (2-level additive Schwarz)
• must ensure that subdomain problems are stable

• definition of coarse level

• Can perform better than split methods 1

Non-overlapping (2-level BNN, BDDC, FETI-DP)
• More complicated

• Especially robust to jumps in coefficients

• Poorly developed for nonsymmetric problems

• Usual formulation involves exact subdomain and coarse solves

1Klawonn and Pavarino, Comparison of overlapping Schwarz methods and
block preconditioners for saddle point problems, 2000
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Conclusions

• Indefinite preconditioning is not a solved problem

• Large jumps in coefficients present a difficulty

• Mesh-independence is attainable for nearly all classes

• All choices show at least weak Reynolds number dependence

How to take advantage of further advances?

• Provide discrete operators (Ap, BB
T , η−1Mp, . . . )

• Libraries can abstract the matrix gymnastics

• PETSc’s PCFieldSplit: generic interface to block relaxation
and factorization where Schur complements are (optionally)
reinterpreted physically

• Everything should be a runtime option
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