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Why do we need 3D Stokes?




Introduction

Non-Newtonian Stokes system
e Strong form: Find (u,p) € Vp x P such that
V- -(nDu) +Vp—f=0
V-u=0

with boundary conditions
(Du—pl)-n= {

u=20 frozen bed, ® < O

0 free surface

—pwiN ice-ocean interface
Pw

U1 = gmeit(Tu,...)

nonlinear slip, ® > O
T(Du —pl)-n = ggip(Tu, . ..) }



Introduction

Other forms
e Minimization form: Find u € Vp which minimizes
Ttw) = [ |DuP £ -u
Q
subject to

V-u=0
e Weak form: Find (u,p) € Vp x P such that

/an:Du—pV~v—qV-u—f-v
Q

—/ g(Tu) - v=0 V(v,q) € Vo xP
o0

e Slip
Gslip(Tw) = Bu(.. )| Tu|™ ' Tu

Navier m =1, Weertman m = % Coulomb m = 0.



Introduction JENK Indefinite Schur Alternatives

Newton iteration

e Standard form of a nonlinear system

F(x)=0
e |teration
Solve: J(z")s" =
Update: 2" — g 4 "

Stokes problem
F(u,p)N/an:Du—pV-'v—qV-u—f'v—O V(v,q)
Q
HERII N/ (Dv)" [n1 + 7 Dw ® Dw|Du
Q
—pV-v—-q¢V-u

J(w) = [A(Bf‘") BT]
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Matrices and Preconditioners

Definition (Matrix)
A matrix is a linear transformation between
finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)
A preconditioner & is a method for constructing a matrix (just a
linear function, not assembled!) P~! = 22(.J) using information .J,
such that P=1.J (or JP~1) has favorable spectral properties.
Left preconditioning in a Krylov iteration
(P~ )z =P '
(P, (P )P 1o, (PLT)2P D, ...}



Introduction JENK Indefinite Schur Alternatives

Matrices and Preconditioners

Definition (Matrix)
A matrix is a linear transformation between
finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)
A preconditioner & is a method for constructing a matrix (just a
linear function, not assembled!) P~! = 22(.J) using information .J,
such that P=1.J (or JP~1) has favorable spectral properties.
Left preconditioning in a Krylov iteration
(P~ )z =P '
(P, (P )P 1o, (PLT)2P D, ...}



Introduction JENK Indefinite Schur Alternatives

Matrices and Preconditioners

Definition (Matrix)
A matrix is a linear transformation between
finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)
A preconditioner & is a method for constructing a matrix (just a
linear function, not assembled!) P~! = 22(.J) using information .J,
such that P=1.J (or JP~1) has favorable spectral properties.
Left preconditioning in a Krylov iteration
(P~ )z =P '
(P, (P )P 1o, (PLT)2P D, ...}



Introduction JENK Indefinite Schur Alternatives

Matrices and Preconditioners

Definition (Matrix)
A matrix is a linear transformation between
finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)
A preconditioner & is a method for constructing a matrix (just a
linear function, not assembled!) P~! = 22(.J) using information .J,
such that P~1.J (or JP~1) has favorable spectral properties.
Left preconditioning in a Krylov iteration
(P~ 'z =P
(P~ Yo, (P )P o, (P T2 P, ..}



Introduction JENK Indefinite Schur Alternatives

Normal preconditioners fail for indefinite problems

Scaling of 3D Stokes solvers
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Stokes

Weak form of the Newton step
Find (u,p) such that

/ (Dv)T (11 4+ n'Dw ® Dw|Du
Q

—pV-v—¢V-u=—v-F(w) V(v,q)
Matrix [A(I;U) BT:| (Z) o <Fu(()w)>

Block factorization

AN I R

where the Schur complement is

S =-BA'BT.
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Properties of the Schur complement

Block factorization

R e | P

where
S =—-BA'BT.

S is symmetric negative definite if A is SPD and B has full
rank (discrete inf-sup condition)

S is dense

We only need to multiply B, BT with vectors.

We need preconditioners for A and S.

Any definite preconditioner can be used for A.

It's not obvious how to precondition S, more on that later.
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Reduced factorizations are sufficient

Theorem (GMRES convergence)

GMRES applied to
Kx=b

converges in n steps for all right hand sides if the minimal
polynomial of K has degree n.

(There exists a polynomial ,, such that 7, (K) =0 and
m(0) =1.)

A lower-triangular preconditioner

Left precondition J:

-1
o, [A A BT
K=P J—[B S| |3

_ At A BTl 1 A°BT
- |-s7'BATY ST B - 1

Since (K — 1)2 = 0, GMRES converges in at most 2 steps.
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Preserving symmetry for MINRES

P must be SPD 1
pi= |4
- -5
A1 A BT 1 A-1BT
_ p-1l7_ _
=[5 T s

1\> [L-4'BTs"'B
(s -y
4

(=) [

2 4
Now Q = —A~'BTS~1B is a projector (Q? = Q) so

RN

Rearranging, K(K — 1)(K? — K — 1) = 0. MINRES converges in

at most 3 iterations.

K_* —
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Preconitioning the Schur complement

e S=—BA BT is dense so we can't form it, we need S 1.

Physics-based commutator: anisotropic pressure diffusion
vl A(w)u ~ /(D'v)T[nl +n'Dw ® Dw|Du

e We would like to find an operator A, such that
—~S=BA'B" ~BB"A;' =: Pg
so that ) o
Py = Ay(BB")"”
e Note
BBT ~ (-V )V =-A
corresponds to a Laplacian in the pressure space (multigrid).
o If 7/, Vg < 1 then A, ~ —nA so Py =1
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Least squares commutator

e Schur complement
S=-BA'BT
Suppose B is square and nonsingular. Then
St=-pTAB™.
B is not square, replace B~ with Moore-Penrose pseudoinverse
Bt =BT (BB, (B =BB")'B.
Then
Pyt =—(BBY)'BABT(BBT)™L.

e Requires 2 Poisson preconditioners for (BBT)_1 per iteration

o Better with scaling, from mass matrices and effective viscosity
(Elman et al. 2006, May & Moresi 2008)
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Unsteady Navier-Stokes

Strong form

J(w) ul plau+w -Vu+u- - Vw) —nViu+Vp = —F(w)
p V-u =0
Matrix form
A(w) BT 1 A BT S_ _pA-lpT
B C|BATU 1 S B

Define A(w) in pressure space
e Want Pg = (BBT)A,' ~ BAT'BT,  Pg' = A,(BBT)"!
o A, ~ p(ozp +w-Vp+ ptr(Vw)) —nV2p

e ptr(Vw) term is questionable, not needed for Picard

e Almost mesh-independent, weak Reynolds number dependence
(Silvester, Elman, Kay, Wathen. Efficient preconditioning of the linearized

Navier-Stokes equations for incompressible flow. 2001)  (Elman et al. 2005-2008)
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Artifical compressibility

5 %= O ]

S=A+BTC'B.

where

e C = eM, corresponds to almost incompressible elasticity

e BIC™'B ~ e 'V(V-u)

e Must precondition grad-div added system .S which becomes
singular as ¢ — 0

e Some results show weaker Reynolds number dependence than
former options

(Dohrmann and others. 2006,2007)
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Unsplit schemes

Multigrid
e discretization-dependent smoothers and interpolation

Overlapping (2-level additive Schwarz)
e must ensure that subdomain problems are stable

e definition of coarse level

e Can perform better than split methods !

Non-overlapping (2-level BNN, BDDC, FETI-DP)

e More complicated
e Especially robust to jumps in coefficients
e Poorly developed for nonsymmetric problems

e Usual formulation involves exact subdomain and coarse solves

Klawonn and Pavarino, Comparison of overlapping Schwarz methods and
block preconditioners for saddle point problems, 2000
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Conclusions

Indefinite preconditioning is not a solved problem
Large jumps in coefficients present a difficulty
Mesh-independence is attainable for nearly all classes

All choices show at least weak Reynolds number dependence

How to take advantage of further advances?

Provide discrete operators (A,, BBT ,n=1M,,...)
Libraries can abstract the matrix gymnastics

PETSc's PCFieldSplit: generic interface to block relaxation
and factorization where Schur complements are (optionally)
reinterpreted physically

Everything should be a runtime option
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