Textbook multigrid efficiency for hydrostatic ice flow

Jed Brown ${ }^{1} \quad$ Barry Smith ${ }^{2}$

${ }^{1}$ VAW, ETH Zürich
${ }^{2}$ MCS, Argonne National Lab
CCSM Land Ice Working Group 2010-02-17

Hydrostatic equations

- Valid in the limit $w_{x} \ll u_{z}$, independent of basal friction ${ }^{1}$
- Eliminate p and w by incompressibility:

3D elliptic system for $\boldsymbol{u}=(u, v)$

$$
\begin{aligned}
& -\nabla \cdot\left[\eta\left(\begin{array}{ccc}
4 u_{x}+2 v_{y} & u_{y}+v_{x} & u_{z} \\
u_{y}+v_{x} & 2 u_{x}+4 v_{y} & v_{z}
\end{array}\right)\right]+\rho g \nabla s=0 \\
& \eta(\gamma)=\frac{B}{2}\left(\epsilon^{2}+\gamma\right)^{\frac{1-\mathfrak{n}}{2 n}}, \quad \mathfrak{n} \approx 3 \\
& \quad \gamma=u_{x}^{2}+v_{y}^{2}+u_{x} v_{y}+\frac{1}{4}\left(u_{y}+v_{x}\right)^{2}+\frac{1}{4} u_{z}^{2}+\frac{1}{4} v_{z}^{2}
\end{aligned}
$$

and slip boundary $\sigma \cdot \boldsymbol{n}=\beta^{2} \boldsymbol{u}$ where

$$
\begin{aligned}
\beta^{2}\left(\gamma_{b}\right) & =\beta_{0}^{2}\left(\epsilon_{b}^{2}+\gamma_{b}\right)^{\frac{\mathfrak{m}-1}{2}}, \quad 0<\mathfrak{m} \leq 1 \\
\gamma_{b} & =\frac{1}{2}\left(u^{2}+v^{2}\right)
\end{aligned}
$$

${ }^{1}$ C. Schoof and R. Hindmarsh, Thin-film flows with wall slip: an asymptotic analysis of higher order glacier flow models, 2010

Hydrostatic solver

- 3D elliptic system for (u, v)

$$
-\nabla \cdot\left[\eta\left(\begin{array}{ccc}
4 u_{x}+2 v_{y} & u_{y}+v_{x} & u_{z} \\
u_{y}+v_{x} & 2 u_{x}+4 v_{y} & v_{z}
\end{array}\right)\right]+\rho g \nabla s=0
$$

- strong anisotropy and viscosity variation, shear important
- current solvers
- Picard iteration
- serial linear solve or 1-level ASM, high iteration counts
- slow convergence with nonlinear sliding
- petsc/src/snes/examples/tutorials/ex48.c
- conforming Q_{1} finite element discretization, no σ-transform
- multigrid Newton-Krylov
- smoother respects strong coupling in vertical: rapid coarsening
- globalized by grid sequencing
- quadratic convergence including slip conditions
- robust to discontinous sliding, high aspect ratio
- high throughput: SSE2 integration, blocked matrix formats

Convergence with grid sequencing

- colored points are nonlinear residuals
- black \times marks are unpreconditioned linear residuals

Picard with ASM overlap $1 / \mathrm{ICC}(1), 8$ subdomains

- $\mathfrak{n}=3, \mathfrak{m}=1 / 3, \frac{\eta_{\text {max }}}{\eta_{\text {min }}} \approx 380$
- geometry of ISMIP-HOM test A, "dimpled sombrero" sliding
- slow nonlinear convergence, over 100 iterations for rtol 10^{-2}

Picard with multigrid preconditioning, 512 subdomains

- slow nonlinear convergence
- very fast linear solves (note rtol is now 10^{-5})

Picard without grid sequencing

- slow initial convergence

Picard for rheology, Newton-linearized sliding

- cannot Newton-linearize only sliding, step is not descent direction

Switch to Newton

- much faster nonlinear convergence
- linear systems slightly more difficult
- initial nonlinear convergence is slow

Nonlinear convergence

- ASM/ICC(0) smoothers, isotropic coarsening
- 512 subdomains on fine levels

Avoid oversolving

- Luis Chacon's variant of Eisenstat-Walker
- almost equivalent nonlinear convergence

Linear solve performance

Aggressive coarsening

- coarsest level is responsible for providing global coupling
- subdomains very small on coarse levels: bottleneck is latency
- approaches to anisotropy
- semi-coarsening (z-only): many intermediate levels, expensive
- line smothers: allow rapid coarsening
- order unknowns so that ICC(0) performs exact column solves
- allows isotropic coarsening at moderate aspect ratios
- allows semicoarsening by factors ≥ 8

Nonlinear convergence: $\mathfrak{n}=3, \mathfrak{m}=1, \eta_{\max } / \eta_{\min }=3800$

- element aspect ratio 640
- discontinuous sliding, strong shear zone ($0.5 \mathrm{~m} / \mathrm{a}$ to $46 \mathrm{~km} / \mathrm{a}$)
- rapid semi-coarsening, then isotropic quasi-2D coarsening

Same problem, rtol 10^{-2}

- almost equivalent convergence

Breakdown of incomplete factorization

- Jacobian is symmetric positive definite
- full Cholesky always has positive pivots
- incomplete Cholesky can generate negative pivots
- increasing fill can make the problem worse
- standard practice is to "shift" diagonal
- may still be an adequate local smoother
- destroys nonlocal properties of preconditioner
- increasing overlap often makes it worse
- additive Schwarz with incomplete Cholesky is unreliable
- additive Schwarz with direct solves is reliable but slow

Conclusions

- Newton is almost 10 times faster than Picard
- deficiencies of serial incomplete factorization is more evident with Newton than Picard
- incomplete factorization is poor with

1-level domain decomposition

- multigrid preconditioning is ~ 50 times faster at $\sim 1 M$ nodes
- grid sequencing is important for globalization
- preconditioner can be lagged with true Jacobian applied matrix-free

