Making high-order finite elements fast, robust, and easy

Jed Brown
VAW, ETH Zürich

Columbia 2009-07-02

High order methods are expensive

Order $p-1$ elements:

- element matrices have p^{6} nonzeros
- cost $\mathcal{O}\left(p^{7}\right)-\mathcal{O}\left(p^{9}\right)$ to assemble
- Very expensive to precondition and solve with

High order methods are expensive

Order $p-1$ elements:

- element matrices have p^{6} nonzeros
- cost $\mathcal{O}\left(p^{7}\right)-\mathcal{O}\left(p^{9}\right)$ to assemble
- Very expensive to precondition and solve with
- High order methods must be competitive per degree of freedom in order to be practical

What do we want from $h p$ solvers?

- h independence
- p independence
- robust for high aspect and deformed elements
- robust to jumps in material coefficients/nonlinearity
- leverage existing code for preconditioning
- minimal problem-specific code development
- runtime within a small constant factor of the best problem-specific solver

Newton iteration

- Standard form of a nonlinear system

$$
F(x)=0
$$

- Iteration

$$
\text { Solve: } \quad J\left(x^{n}\right) s^{n}=-F\left(x^{n}\right)
$$

Update: $\quad x^{n+1} \leftarrow x^{n}+s^{n}$
Stokes problem

$$
\begin{aligned}
& {\left[\begin{array}{l}
\boldsymbol{v}
\end{array}\right]^{T} F(\boldsymbol{u}, p) } \sim \int_{\Omega} \eta D \boldsymbol{v}: D \boldsymbol{u}-p \nabla \cdot \boldsymbol{v}-q \nabla \cdot \boldsymbol{u}-\boldsymbol{f} \cdot \boldsymbol{v}=0 \quad \forall(\boldsymbol{v}, q) \\
& {\left[\begin{array}{l}
\boldsymbol{v} \\
q
\end{array}\right]^{T} J(\boldsymbol{w})\left[\begin{array}{c}
\boldsymbol{u} \\
p
\end{array}\right] } \sim \int_{\Omega} \eta D \boldsymbol{v}: D \boldsymbol{u}+\eta^{\prime}(D \boldsymbol{v}: D \boldsymbol{w})(D \boldsymbol{w}: D \boldsymbol{u}) \\
&-p \nabla \cdot \boldsymbol{v}-q \nabla \cdot \boldsymbol{u} \\
& J(\boldsymbol{w})=\left[\begin{array}{cc}
A(\boldsymbol{w}) & B^{T} \\
B
\end{array}\right]
\end{aligned}
$$

Matrices and Preconditioners

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)

A preconditioner \mathscr{P} is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}(\hat{J})$ using information \hat{J}, such that $P^{-1} J$ (or $J P^{-1}$) has favorable spectral properties.

Left preconditioning in a Krylov iteration

$$
\begin{gathered}
\left(P^{-1} J\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} J\right) P^{-1} b,\left(P^{-1} J\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

Matrices and Preconditioners

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)

A preconditioner \mathscr{P} is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}(\hat{J})$ using information \hat{J}, such that $P^{-1} J$ (or $J P^{-1}$) has favorable spectral properties.

Left preconditioning in a Krylov iteration

$$
\begin{gathered}
\left(P^{-1} J\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} J\right) P^{-1} b,\left(P^{-1} J\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

Matrices and Preconditioners

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)

A preconditioner \mathscr{P} is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}(\hat{J})$ using information \hat{J}, such that $P^{-1} J$ (or $J P^{-1}$) has favorable spectral properties.

Left preconditioning in a Krylov iteration

$$
\begin{gathered}
\left(P^{-1} J\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} J\right) P^{-1} b,\left(P^{-1} J\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

Matrices and Preconditioners

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining
it's action in terms of entries (usually stored in a sparse format).

Definition (Preconditioner)

A preconditioner \mathscr{P} is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}(\hat{J})$ using information \hat{J}, such that $P^{-1} J$ (or $J P^{-1}$) has favorable spectral properties.

Left preconditioning in a Krylov iteration

$$
\begin{gathered}
\left(P^{-1} J\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} J\right) P^{-1} b,\left(P^{-1} J\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

Physics-based preconditioning

Working definition
Matrices assembled for preconditioning do not correspond to differential operators present in the continuum equations.
Examples

- Indefinite problems ${ }^{1}$
- Incompressible flow/elasticity
- Mixed formulations of flow in porous media
- PDE-constrained optimization
- Stiff-wave problems ${ }^{2}$
- Surface gravity waves in geophysical flows
- Whistler waves in Hall MHD

General construction

Block incomplete factorization of the Jacobian, reinterpret resulting Schur complements.
${ }^{1}$ Benzi, Golub, Liesen. Numerical solution of saddle point problems, 2005.
${ }^{2}$ Knoll, Mousseau, Chacón, Reisner. Jacobian-Free Newton-Krylov methods for the accurate time integration of stiff wave systems, 2005.

Bottlenecks of (Jacobian-free) Newton-Krylov

- Matrix assembly
- integration: FPU
- insertion: memory/branching
- Preconditioner setup
- coarse level operators
- overlapping subdomains
- (incomplete) factorization
- Preconditioner application
- triangular solves/relaxation: memory
- coarse levels: network latency
- Matrix multiplication
- Sparse storage: memory
- Matrix-free: FPU

Bottlenecks of (Jacobian-free) Newton-Krylov

- Matrix assembly
- integration: FPU
- insertion: memory/branching
- Preconditioner setup
- coarse level operators
- overlapping subdomains
- (incomplete) factorization
- Preconditioner application
- triangular solves/relaxation: memory
- coarse levels: network latency
- Matrix multiplication
- Sparse storage: memory
- Matrix-free: FPU
- Globalization

Hardware capabilities

Floating point unit
Recent Intel: each core can issue

- 1 packed add (latency 3)
- 1 packed mult (latency 5)
- One can include a read
- Peak: 10 Gflop/s (double)

Memory

- ~ 250 cycle latency
- 5.3 GB/s bandwidth (per channel)
- 1 double load / 3.7 cycles

(Oliker et al. 2008)

Sparse Mat-Vec

(Oliker et al. Multi-core Optimization of Sparse Matrix Vector Multiplication, 2008)

Nodal $h p$-version finite element methods

1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature \hat{R}, weights \hat{W}
- Evaluation: \hat{B}, \hat{D}

3D reference element

$$
\hat{\boldsymbol{W}}=\hat{W} \otimes \hat{W} \otimes \hat{W}
$$

$$
\hat{\boldsymbol{D}}_{0}=\hat{D} \otimes \hat{B} \otimes \hat{B}
$$

$$
\hat{D}_{1}=\hat{B} \otimes \hat{D} \otimes \hat{B}
$$

$$
\hat{D}_{2}=\hat{B} \otimes \hat{B} \otimes \hat{D}
$$

Nodal $h p$-version finite element methods

1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature \hat{R}, weights \hat{W}
- Evaluation: \hat{B}, \hat{D}

3D reference element

$$
\hat{\boldsymbol{W}}=\hat{W} \otimes \hat{W} \otimes \hat{W}
$$

$$
\hat{\boldsymbol{D}}_{0}=\hat{D} \otimes \hat{B} \otimes \hat{B}
$$

$$
\hat{\boldsymbol{D}}_{1}=\hat{B} \otimes \hat{D} \otimes \hat{B}
$$

$$
\hat{\boldsymbol{D}}_{2}=\hat{B} \otimes \hat{B} \otimes \hat{D}
$$

These tensor product operations are very efficient, $10-20+$ times faster than sparse mat-vec

Operations on physical elements

Mapping to physical space

$$
x^{e}: \hat{K} \rightarrow K^{e}, \quad J_{i j}^{e}=\partial x_{i}^{e} / \partial \hat{x}_{j}, \quad\left(J^{e}\right)^{-1}=\partial \hat{x} / \partial x^{e}
$$

Element operations in physical space

$$
\left.\begin{array}{rl}
\boldsymbol{B}^{e} & =\hat{\boldsymbol{B}} \\
\boldsymbol{D}_{i}^{e} & =\Lambda\left(\frac{\partial \hat{x}_{0}}{\partial x_{i}}\right) \hat{\boldsymbol{D}}_{0}+\Lambda\left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right) \hat{\boldsymbol{D}}_{1}+\Lambda\left(\left|J^{e}(\boldsymbol{r})\right|\right) \\
\left(\boldsymbol{D}_{i}^{e}\right)^{T} & =\hat{\boldsymbol{D}}_{0}^{T} \Lambda\left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right) \hat{\boldsymbol{D}}_{2} \\
\partial x_{i}
\end{array}\right)+\hat{\boldsymbol{D}}_{1}^{T} \Lambda\left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right)+\hat{\boldsymbol{D}}_{2}^{T} \Lambda\left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right) \text {) }
$$

Global problem is defined by assembly

$$
\mathcal{E}=\left[\mathcal{E}^{e}\right]
$$

where \mathcal{E}^{e} maps global dofs to element dofs

Residuals

- Continuous weak form: find $u \in \mathcal{V}_{D}$ such that

$$
\int_{\Omega} v \cdot f_{0}(u, \nabla u)+\nabla v: f_{1}(u, \nabla u)=0 \quad \forall v \in \mathcal{V}_{0}
$$

- Fully discrete form

$$
\begin{aligned}
\sum_{e} \mathcal{E}_{e}^{T}\left[\left(\boldsymbol{B}^{e}\right)^{T} \boldsymbol{W}^{e} \Lambda\right. & \left(f_{0}\left(u^{e}, \nabla u^{e}\right)\right) \\
& \left.+\sum_{i=0}^{2}\left(\boldsymbol{D}_{i}^{e}\right)^{T} \boldsymbol{W}^{e} \Lambda\left(f_{1}\left(u^{e}, \nabla u^{e}\right)\right)\right]=\mathbf{0}
\end{aligned}
$$

with $u^{e}=\boldsymbol{B}^{e} \mathcal{E}^{e} u$ and $\nabla u^{e}=\left\{\boldsymbol{D}_{i}^{e} \mathcal{E}^{e} u\right\}_{i=0}^{2}$.

1. Get element dofs with \mathcal{E}^{e}, evaluate $u, \nabla u$ at quadrature points
2. Apply the pointwise operations f_{0}, f_{1}
3. Weight the residuals with \boldsymbol{W}^{e}
4. Contribute weighted residuals via $\mathcal{E}_{e}^{T}\left(\boldsymbol{B}^{e}\right)^{T}$ and $\mathcal{E}_{e}^{T}\left(\boldsymbol{D}^{e}\right)^{T}$

Jacobians

- Continuous weak form: find $u \in \mathcal{V}_{D}$ such that

$$
v^{T} F(u) \sim \int_{\Omega} v \cdot f_{0}(u, \nabla u)+\nabla v: f_{1}(u, \nabla u)=0 \quad \forall v \in \mathcal{V}_{0}
$$

- Weak form of the Jacobian

$$
\begin{gathered}
v^{T} J(w) u \sim \int_{\Omega}\left[\begin{array}{ll}
v^{T} & \nabla v^{T}
\end{array}\right]\left[\begin{array}{ll}
f_{0,0} & f_{0,1} \\
f_{1,0} & f_{1,1}
\end{array}\right]\left[\begin{array}{c}
u \\
\nabla u
\end{array}\right] \\
{\left[f_{i, j}\right]=\left[\begin{array}{cc}
\frac{\partial f_{0}}{\partial u} & \frac{\partial f_{0}}{\partial \nabla u} \\
\frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial \nabla u}
\end{array}\right](w, \nabla w)}
\end{gathered}
$$

- Frequently much of $\left[f_{i, j}\right]$ is computed while evaluating f_{i}.
- Inexpensive taping for full-accuracy matrix-free Jacobian
- Code reuse in preconditioner assembly
- The terms in $\left[f_{i, j}\right]$ are easy to compute with symbolic math. Possible to automatically generate code.

Fast diagonalization

Strengths

- Very robust for high order
- Avoids any sparse matrices (on finest level)

Weaknesses

- only available for special equations
- non-affine elements
- variable coefficients
- custom software development
(Lottes, Fischer. Hybrid Multigrid/Schwarz Algorithms
for the Spectral Element Method, 2005)

"Dual order"

- any system of equations
- robust on non-affine elements
- robust to variable coefficients
- leverages existing software
- requires very little coding
- weak (bounded) p-dependence

Changing the inner product
Consider the problem $A x=b$ discretized with high-order elements. The consistent formulation of this problem with low-order elements is $\hat{A} x=\hat{M} M^{-1} b$.

What code do you need to write?

Conventional FEM

- Residuals $v^{T} F(u)$ for each quadrature point:
sum basis functions: $u, \nabla u$ evaluate f_{0}, f_{1}
weight residuals against $v, \nabla v$
- Assembly $J(w)$
for each quadrature point:
sum basis functions: $w, \nabla w$
evaluate $\left[f_{i, j}\right]$
for each test function:
for each trial function: sum into K^{e} [test,trial]
insert K^{e} into global matrix

Dual-order hp-FEM

- Residuals $v^{T} F(u)$ evaluate $u, \nabla u$ at quad pts evaluate f_{0}, f_{1}, tape for $\left[f_{i, j}\right]$ weight residuals and transpose
- Matrix-free $v^{T} J(w) u$ evaluate $u, \nabla u$ at quad points restore $\left[f_{i, j}\right](w)$ from tape weight residuals

$$
[\stackrel{v}{\nabla v}]^{T}\left[\begin{array}{ll}
f_{0,0} & f_{0,1} \\
f_{1,0} & f_{1,1}
\end{array}\right][\stackrel{u}{\nabla u}]
$$

transpose

- Assemble one or more matrices for preconditioning

\mathfrak{p}-Bratu

$$
-\nabla \cdot\left(|\nabla u|^{\mathfrak{p}-2} \nabla u\right)-\lambda e^{u}-f=0
$$

for $1 \leq \mathfrak{p} \leq \infty, \lambda<\lambda_{\text {crit }}$. Singular or degenerate when $\nabla u=0$, turning point at $\lambda_{\text {crit }}$.
Regularized variant in weak form
Find $u \in \mathcal{V}_{D}$ such that

$$
\int_{\Omega} \eta \nabla v \cdot \nabla u-\lambda v e^{u}-f v=0 \quad \forall v \in \mathcal{V}_{0}
$$

where $\eta(\gamma)=(\epsilon+\gamma)^{\frac{p-2}{2}}, \gamma=\frac{1}{2} \nabla u \cdot \nabla u$
Jacobian

$$
v^{T} J(w) u \sim \int_{\Omega} \nabla v \cdot\left[\eta \mathbf{1}+\eta^{\prime} \nabla w \otimes \nabla w\right] \cdot \nabla u-v\left[\lambda e^{w}\right] u
$$

where $\eta^{\prime}=\frac{\mathfrak{p}-2}{2} \eta /(\epsilon+\gamma)$.
Efficient matrix-free form: $\left[f_{i, j}\right] \sim\left(\eta, \sqrt{\eta^{\prime}} \nabla w, \lambda e^{w}\right)$

Performance compared to conventional quadratic elements

Profiling

Event	Libmesh Q_{2}	Dohp Q_{3}	Dohp Q_{5}	Dohp Q_{7}
Assembly	41	25	24	23
Krylov	111	73	119	117
MF MatMult	-	36	55	55
PCSetUp	16	10	12	9
PCApply	82	27	51	52
CG its	34	23	41	49
Mat nonzeros	111 M	44.7 M	44.7 M	44.3 M

Assembly and solve time (seconds) for a 3D Poisson problem with 121^{3} degrees of freedom (120^{3} for Q_{7}), relative tolerance of 10^{-8}.

Deformed meshes

Pseudocolor

Deformed meshes

order	8^{3} brick ML/BMG	twist ML/BMG	random ML/BMG
Q_{1}	$4 / 4$	$4 / 4$	$8 /-$
Q_{2}	$24 / 24$	$25 / 23$	$27 / 27$
Q_{3}	$24 / 24$	$29 / 27$	$28 / 27$
Q_{4}	$29 / 28$	$39 / 30$	$34 / 33$
Q_{5}	$35 / 27$	$47 / 34$	$42 / 35$
Q_{6}	$35 / 29$	$60 / 40$	$43 / 41$

Iteration counts for three different meshes using ML and BoomerAMG (BMG) preconditioning. For the Q_{1} case, BoomerAMG failed, producing NaN .

Large variation in coefficients

Event	R-ML	R-ILU(0)	R-ILU(1)	E-ILU(0)	E-ILU(1)
Residual	65	35	29	57	51
Assembly	136	78	68	127	110
Krylov	287	295	274	187	166
MF MatMult	173	259	190	155	110
PCSetup	27	2	11	5	17
PCApply	86	26	67	27	39
Total time	496	413	374	377	333
Newton \#	26	15	13	24	21
Residual \#	46	25	20	40	36
Krylov \#	606	911	667	545	386

Full nonlinear solve, 10^{8} variation in η, Q_{3} elements.

Power-law Stokes

- Strong form: Find $(\boldsymbol{u}, p) \in \mathcal{V}_{D} \times \mathcal{P}$ such that

$$
\begin{aligned}
-\nabla \cdot(\eta D \boldsymbol{u})+\nabla p-\boldsymbol{f} & =0 \\
\nabla \cdot \boldsymbol{u} & =0
\end{aligned}
$$

where

$$
\begin{aligned}
D \boldsymbol{u} & =\frac{1}{2}\left(\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}\right) \\
\gamma(D \boldsymbol{u}) & =\frac{1}{2} D \boldsymbol{u}: D \boldsymbol{u} \\
\eta(\gamma) & =B(\Theta, \ldots)(\epsilon+\gamma)^{\frac{\mathfrak{p}-2}{2}}, \quad \mathfrak{p}=1+\frac{1}{\mathfrak{n}} \approx \frac{4}{3}
\end{aligned}
$$

Power-law Stokes

Weak form of the Newton step
Find (\boldsymbol{u}, p) such that

$$
\begin{aligned}
\int_{\Omega} D \boldsymbol{v}: & {\left[\eta \mathbf{1}+\eta^{\prime} D \boldsymbol{w} \otimes D \boldsymbol{w}\right]: D \boldsymbol{u} } \\
& -p \nabla \cdot \boldsymbol{v}-q \nabla \cdot \boldsymbol{u}=-v \cdot F(\boldsymbol{w}) \quad \forall(\boldsymbol{v}, q)
\end{aligned}
$$

Matrix form

$$
\left[\begin{array}{cc}
A(\boldsymbol{w}) & B^{T} \\
B &
\end{array}\right]\binom{u}{p}=-\binom{F_{u}(\boldsymbol{w})}{0}
$$

Block factorization

$$
\left[\begin{array}{cc}
A & B^{T} \\
B &
\end{array}\right]=\left[\begin{array}{cc}
1 & \\
B A^{-1} & 1
\end{array}\right]\left[\begin{array}{cc}
A & B^{T} \\
& S
\end{array}\right]=\left[\begin{array}{cc}
A & \\
B & S
\end{array}\right]\left[\begin{array}{cc}
1 & A^{-1} B^{T} \\
& 1
\end{array}\right]
$$

where the Schur complement is

$$
S=-B A^{-1} B^{T}
$$

Power-law Stokes Scaling

Power-law Stokes Scaling

	6^{3}	12^{3}	16^{3}	20^{3}	24^{3}	30^{3}
Velocity dofs	20577	151959	352947	680943	1167051	2260713
Pressure dofs	343	2197	4913	9261	15625	29791
Assembly (s)	0.5	4.2	10	20	34	66
Krylov (s)	3.3	31	74	152	292	623
GMRES its	34	36	36	37	41	42

Assembly and linear-solve time (seconds) for a relative tolerance of 10^{-6} on the Stokes problem with mixed $Q_{3}-Q_{1}$ elements using GMRES right-preconditioned with LSC and ML.

Conclusions

- High-order elements are fast, robust, and easy.
- They fit naturally into the JFNK framework.
- They are effective at utilizing modern hardware.
- Assembling matrices based on Q_{2} or higher elements is rarely cost-effective (memory or time).

Ongoing work

- Code generation/AD
- Stabilized methods
- Moving domains
- Iterative substructuring (BDDC/FETI-DP)

Tools

- PETSc
http://mcs.anl.gov/petsc
- ML, Hypre, MUMPS
- ITAPS http://itaps.org
- MOAB, CGM, Lasso

