The Portable Extensible Toolkit for Scientific computing New developments, memory performance, and algorithmic experimentation

Jed Brown

Laboratory of Hydrology, Hydraulics, and Glaciology ETH Zürich

NOTUR 2010-05-21, Bergen

Outline

1 Introduction

2 Memory performance for sparse kernels Sparse Matrix-Vector products Triangular solves

3 Time Integration

Differential Algebraic Equations Strong stability preserving methods

4 Preconditioning using splitting methods

5 Hydrostatic Ice

- Architecture
 - tightly coupled (e.g. XT5, BG/P, Earth Simulator)
 - loosely coupled such as network of workstations
- Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)
- Any compiler
- Real/complex, single/double precision, 32/64-bit int
- Usable from C, C++, Fortran 77/90, and Python
- Free to everyone (BSD-style license), open development
- 500B unknowns, 75% weak scalability on Jaguar (225k cores) and Jugene (295k cores)
- Same code runs performantly on a laptop

iPhone support

- Architecture
 - tightly coupled (e.g. XT5, BG/P, Earth Simulator)
 - loosely coupled such as network of workstations
- Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)
- Any compiler
- Real/complex, single/double precision, 32/64-bit int
- Usable from C, C++, Fortran 77/90, and Python
- Free to everyone (BSD-style license), open development
- 500B unknowns, 75% weak scalability on Jaguar (225k cores) and Jugene (295k cores)
- Same code runs performantly on a laptop
- iPhone support

Philosophy: Everything has a plugin architecture

- Vectors, Matrices, Coloring/ordering/partitioning algorithms
- Preconditioners, Krylov accelerators
- Nonlinear solvers, Time integrators
- Spatial discretizations/topology*

Example

Vendor supplies matrix format and associated preconditioner, distributes compiled shared library. Application user loads plugin at runtime, no source code in sight.

Algorithms, (parallel) debugging aids, low-overhead profiling

Composability

Try new algorithms by choosing from product space and composing existing algorithms (multilevel, domain decomposition, splitting).

Experimentation

- It is not possible to pick the solver *a priori*.
 What will deliver best/competitive performance for a given physics, discretization, architecture, and problem size?
- PETSc's response: expose an algebra of composition so new solvers can be created at runtime.
- Important to keep solvers decoupled from physics and discretization because we also experiment with those.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶ •

- Computational Scientists
 - PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEO, Columbia), PFLOTRAN (DOE), SHARP/UNIC (DOE)
- Algorithm Developers (iterative methods and preconditioning)
- Package Developers
 - SLEPc, TAO, Deal.II, Libmesh, FEniCS, PETSc-FEM, MagPar, OOFEM, FreeCFD, OpenFVM
- Funding
 - Department of Energy
 - SciDAC, ASCR ISICLES, MICS Program, INL Reactor Program
 - National Science Foundation
 - CIG, CISE, Multidisciplinary Challenge Program
- Hundreds of tutorial-style examples
- · Hyperlinked manual, examples, and manual pages for all routines
- Support from petsc-maint@mcs.anl.gov

< ≣ >

Memory

Bottlenecks of (Jacobian-free) Newton-Krylov

- Matrix assembly
 - integration/fluxes: FPU
 - insertion: memory/branching
- Preconditioner setup
 - coarse level operators
 - overlapping subdomains
 - (incomplete) factorization
- Preconditioner application
 - triangular solves/relaxation: memory
 - coarse levels: network latency
- Matrix multiplication
 - Sparse storage: memory
 - Matrix-free: FPU

Globalization

Memory

Intel Clowertown

- 75 Gflop/s
- 21 GB/s bandwidth
- thread + instruction level parallelism
- vector instructions (SSE)

- 17 Gflop/s
- 21 GB/s bandwidth
- thread + instruction level parallelism
- vector instructions (SSE)

(日)

э

Hardware capabilities

Floating point unit

Recent Intel: each core can issue

- 1 packed add (latency 3)
- 1 packed mult (latency 5)
- One can include a read
- Out of Order execution
- Peak: 10 Gflop/s (double)

Memory

- $\bullet~\sim$ 250 cycle latency
- 5.3 GB/s bandwidth
- 1 double load / 3.7 cycles
- Pay by the cache line (32/64 B)
- L2 cache: \sim 10 cycle latency

Sparse Mat-Vec performance model

Compressed Sparse Row format (AIJ)

For $m \times n$ matrix with *N* nonzeros

- ai row starts, length m+1
- aj column indices, length N, range [0, n-1)

aa nonzero entries, length N, scalar values

$$y \leftarrow y + Ax \qquad for (i=0; i < m; i++) \\ for (j=ai[i]; j < ai[i+1]; j++) \\ y[i] += aa[j] * x[aj[j]];$$

- One add and one multiply per inner loop
- Scalar aa[j] and integer aj[j] only used once
- Must load aj[j] to read from x, may not reuse cache well

Memory Bandwidth

• Stream Triad benchmark (GB/s): $w \leftarrow \alpha x + y$

Threads per Node	Cray XT5		BlueGene/P	
	Total	Per Core	Total	Per Core
1	8448	8448	2266	2266
2	10112	5056	4529	2264
4	10715	2679	8903	2226
6	10482	1747	-	-

Sparse matrix-vector product: 6 bytes per flop

Machina	Peak MFlop/s	Bandwidth (GB/s)		Ideal MFlop/s
Machine	per core	Required	Measured	
Blue Gene/P	3,400	20.4	2.2	367
XT5	10,400	62.4	1.7	292

Optimizing Sparse Mat-Vec

- Order unknows so that vector reuses cache (Reverse Cuthill-McKee)
 - Optimal: (2 flops)(bandwidth) sizeof(Scalar)+sizeof(Int)

 - Usually improves strength of ILU and SOR
- Coalesce indices for adjacent rows with same nonzero pattern (Inodes)
 - Optimal: (2 flops)(bandwidth) sizeof(Scalar)+sizeof(Int)/i
 - Can do block SOR (much stronger than scalar SOR)
 - Default in PETSc, turn off with -mat no inode
 - Requires ordering unknowns so that fields are interlaced, this is (much) better for memory use anyway
- Use explicit blocking, hold one index per block (BAIJ format)
 - Optimal: (2 flops)(bandwidth) sizeof(Scalar)+sizeof(Int)/b²
 - Block SOR and factorization
 - Symbolic factorization works with blocks (much cheaper)
 - Very regular memory access, unrolled dense kernels
 - Faster insertion: MatSetValuesBlocked()

D > 4 @ > 4 @ > 4 @ >

Optimizing unassembled Mat-Vec

High order spatial discretizations do more work per node

- Dense tensor product kernel (like small BLAS3)
- Cubic (Q₃) elements in 3D can achieve > 60% of peak FPU (compare to < 6% for assembled operators on multicore)
- Can store Jacobian information at quadrature points (usually pays off for *Q*₂ and higher in 3D)
- Spectral methods
- Often still need an assembled operator for preconditioning
- Boundary element methods
 - Dense kernels
 - Fast Multipole Method (FMM)

Storing Factors

- Forward and back solves skip over unused part of each row
 - Pollutes cache and bus with unused part, software prefetch helps some
- Back solves move backward through memory and so does vector
 - Core 2: hardware prefetch 16 forward-moving pointers and 4 backward-moving not across 4 KiB page boundaries

- Forward and back solves get contiguous memory
- Move forward through memory for matrix entries
 - Good for vector prefetch which necessarily tracks backward through memory

Improvement from better storage for factors

Processor	Motrix	SpMV	Triangular solves	
FIOCESSO	IVIALITX	(Mflop/s)	Old format	New format
	7-point Laplace	537	261 (49%)	447 (83%)
Core 2 Duo	3D Euler AlJ	620	260 (42%)	660 (106%)
	3D Euler BAIJ	890	468 (53%)	758 (85%)
	7-point Laplace	98	46 (47%)	62 (63%)
BlueGene/P	3D Euler AlJ	148	99 (66%)	126 (85%)
	3D Euler BAIJ	303	198 (65%)	260 (86%)

Barry Smith and Hong Zhang, *Sparse triangular solves for ILU revisited: data layout crucial to better performance*, submitted to Intl. J. of High Performance Computing Applications.

• • • • • • •

Stiff integrators

- $\dot{x} = \lambda x$
- $\mathscr{R}(h\lambda) = x^{n+1}/x^n$

- A-stable: $|\mathscr{R}(\{\Re[z] \leq 0\})| \leq 1$
- L-stable: $\lim_{z\to\infty} \mathscr{R}(z) = 0$

3

▶ < 글 > < 글 >

Barriers

Dahlquist's second barrier

An A-stable linear multistep method has order $p \leq 2$.

Diagonally implicit Runge-Kutta

A DIRK evaluates the first stage to order q = 1.

Circumvent with general linear methods

$$\begin{bmatrix} \mathbf{Y} \\ \mathbf{X}^{n+1} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{U} \\ \mathbf{B} & \mathbf{V} \end{bmatrix} \begin{bmatrix} h\dot{\mathbf{Y}} \\ \mathbf{X}^n \end{bmatrix}$$

- stage values $Y = \{y_1, \ldots, y_s\}$
- Nordsieck vector passed between steps

$$X = \{x_1, ..., x_r\} = \{x, h\dot{x}, h^2 \ddot{x}, ...\}$$

• A can be lower triangular (permits stages to be solved sequentially)

Special class: IRKS (inherent Runge-Kutta stability)

- A-stable
- L-stable
- order p, stage order q, p = q = r 1 = s 1
- diagonally implicit
- Asymptotically correct error estimates for present method and method of order p+1.
- Implemented in PETSc's TSGL (-ts_type gl)
 - implicit DAE form: $f(t, x, \dot{x}) = 0$
 - orders *p* = 1,...,5
 - adaptive-order, adaptive-step controller
 - plugin architecture for controllers
 - make new methods available to the controller by giving their tableau, error estimates computed automatically
 - solve $f(t, x, x_0 + \alpha x) = 0$ with SNES

Butcher, Jackiewicz, Wright, *On error propagation in general linear methods for ordinary differential equations*, 2007.

Strong stability preserving methods: -ts_type ssp

- Conservation laws $u_t + \operatorname{div} f(u) = 0$
- Discontinuous solutions, requires careful discretization to prevent spurious oscillations
- SSP property allows decoupling of spatial and time discretizations
- Choose spatial discretization that is stable with forward-Euler (e.g. TVD finite volume, ENO/WENO, Discontinuous Galerkin)
- Barriers for methods of order greater than 1 with s stages

$$c_{
m eff} = rac{|\lambda_{
m max}| \Delta t}{s \Delta x} < egin{cases} 1 & {
m Explicit,} \ 2 & {
m Implicit.} \end{cases}$$

Popular method	Ceff	Improved method	C _{eff}	Storage
SSPRK(2,2)	0.500	SSPRK(<i>m</i> ,2)	1 – 1/ <i>m</i>	2 <i>N</i> *
SSPRK(3,3)	0.333	SSPRK(n ² ,3)	1 – 1/ <i>n</i>	2N
SSPRK(5,4)	0.377	SSPRK(10,4)	0.6	2N

David Ketcheson, *Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations*, 2008.

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

• Relaxation: -pc_fieldsplit_type [additive, multiplicative, symmetric_multiplicative]

$$\begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} 1 - \begin{bmatrix} A & B \\ 1 \end{bmatrix} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \end{pmatrix}$$

- · Gauss-Seidel inspired, works when fields are loosely coupled
- Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix} \begin{bmatrix} A & B \\ S \end{bmatrix}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators

Examples of splitting for strong coupling

Incompressible flow

$$J(u) \begin{bmatrix} w \\ p \end{bmatrix} \sim \begin{bmatrix} u \cdot \nabla - \Delta & \nabla \\ - \operatorname{div} \end{bmatrix} \begin{bmatrix} w \\ p \end{bmatrix}$$
$$S \sim \operatorname{div}(u \cdot \nabla - \Delta)^{-1} \nabla \approx \Delta (u \cdot \nabla - \Delta)^{-1}$$

- S⁻¹ requires solve with a Laplacian and application of an advection-diffusion operator defined in pressure space (Elman et al, 2008)
- Shallow water with stiff gravity wave, $\alpha = 1/\Delta t$, wave speed \sqrt{gh}

$$J(h, uh) \begin{bmatrix} h'\\ uh' \end{bmatrix} \sim \begin{bmatrix} \alpha & \text{div}\\ gh\nabla & \alpha \end{bmatrix} \begin{bmatrix} h'\\ uh' \end{bmatrix} + (\text{non-stiff terms})$$
$$S \sim \alpha - \alpha^{-1}g \operatorname{div} h\nabla$$

 Scalar parabolic operator, good for multigrid (Mousseau, Knoll, and Reisner, 2002)

Jed Brown (ETH Zürich)

Hydrostatic equations for ice sheet flow

- Valid in the limit $w_x \ll u_z$, independent of basal friction
- Eliminate *p* and *w* by incompressibility:

3D elliptic system for u = (u, v)

$$-\nabla \cdot \left[\eta \begin{pmatrix} 4u_x + 2v_y & u_y + v_x & u_z \\ u_y + v_x & 2u_x + 4v_y & v_z \end{pmatrix}\right] + \rho g \nabla s = 0$$

$$\eta(\gamma) = \frac{B}{2} (\varepsilon^2 + \gamma)^{\frac{1-n}{2n}}, \quad n \approx 3$$
$$\gamma = u_x^2 + v_y^2 + u_x v_y + \frac{1}{4} (u_y + v_x)^2 + \frac{1}{4} u_z^2 + \frac{1}{4} v_z^2$$

and slip boundary $\sigma \cdot n = \beta^2 u$ where

$$\begin{split} \beta^2(\gamma_b) &= \beta_0^2 (\varepsilon_b^2 + \gamma_b)^{\frac{m-1}{2}}, \qquad 0 < \mathfrak{m} \leq 1\\ \gamma_b &= \frac{1}{2} (u^2 + v^2) \end{split}$$

• Q₁ FEM: src/snes/examples/tutorials/ex48.c

Jed Brown (ETH Zürich)

What about splitting at the global level?

- Split (*u*, *v*) multiplicatively at global level: -pc_type fieldsplit
 - parallel direct solve in splits
 - -fieldsplit_pc_type cholesky
 - -fieldsplit_pc_factor_mat_solver_package mumps
 - Split additively instead

-pc_fieldsplit_type additive

Parallel ML in splits, ASM(1)/ICC(1) on levels

-fieldsplit_pc_type asm

-fieldsplit_sub_pc_type icc

- -fieldsplit_sub_pc_factor_levels 1
- Parallel BoomerAMG in splits

-fieldsplit_pc_type hypre

ASM/Cholesky in splits

-fieldsplit_pc_type asm

-fieldsplit_sub_pc_type cholesky

- ASM/ICC(0) in splits
 - -fieldsplit_pc_type asm
 - -fieldsplit_sub_pc_type icc

(ロ) (同) (三) (三) (三) (○)

Split in subdomains?

- ASM on coupled system: -pc_type asm
 - Split in subdomains, Cholesky in splits
 -sub_pc_type fieldsplit
 -sub_fieldsplit_pc_type cholesky
 - Split in subdomainst, ML in splits
 - -sub_pc_type fieldsplit
 - -sub_fieldsplit_pc_type ml
 - Split in subdomains, BoomerAMG in splits
 - -sub_pc_type fieldsplit
 - -sub_fieldsplit_pc_type hypre
 - Split in subdomains, ICC(1) in splits -sub_pc_type fieldsplit

-sub_fieldsplit_pc_type icc

 Block ICC(0) on subdomains (no splitting), stored as block symmetric -sub_pc_type icc -da_mat_type sbaij

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Coupled Multigrids

 Geometric multigrid with isotropic coarsening, ASM(1)/Cholesky and ASM(0)/ICC(0) on levels

-mg_levels_pc_type bjacobi -mg_levels_sub_pc_type icc -mg_levels_1_pc_type asm -mg_levels_1_sub_pc_type cholesky

- ... with Galerkin coarse operators -pc_mg_galerkin
- ... with ML's aggregates

-pc_type ml -mg_levels_pc_type asm

 Geometric multigrid with aggressive semi-coarsening, ASM(1)/Cholesky and ASM(0)/ICC(0) on levels

-da_refine_hierarchy_x 1,1,8,8 -da_refine_hierarchy_y

2,2,1,1 -da_refine_hierarachy_z 2,2,1,1

• Simulate 1024 cores, interactively, on my laptop -mg_levels_pc_asm_blocks 1024

Summary of solvers

Method	Avg Krylov/Newton	
Global multiplicative FieldSplit, ASM/LU	175	
Global multiplicative FieldSplit, BoomerAMG	59	
Global multiplicative FieldSplit, strong ML	71	
Global additive FieldSplit, ASM/LU	197	
Global ASM, FieldSplit/LU inside	215	
Global ASM, LU inside	167	
Coupled BoomerAMG	60	
Coupled ML with strong smoothers	72	
Geometric multigrid	11	
Geometric multigrid, Galerkin coarse	122	

Smallish size $40 \times 40 \times 10$, relatively difficult parameters

• • • • • • •

< 口 > < 🗇

Linear solve performance

Hydrostatic Ice

Status-quo Picard

Jed Brown (ETH Zürich)

Grid sequencing: -dmmg_grid_sequence

Avoid oversolving

Luis Chacon's variant of Eisenstat-Walker:

-snes_ksp_ew -snes_ksp_ew_rtolmax 0.5 -snes_ksp_ew_version 3

Jed Brown (ETH Zürich)

Thoughts on Multigrid

- · Rapid coarsening is essential for weak scalability
 - Push the algorithm towards "multilevel domain decomposition"
- Energy minimizing interpolants (Wan, Chan, and Smith 2000)
 - Similar to exotic Schwarz methods, see Dohrmann and Widlund 2008, 2009
 - Closely related to FETI-DP/BDDC coarse spaces
- (Precondition with) first-order upwind for transport/waves
- Smooth all components together (block SOR, Vanka smoothers for indefinite problems)
- Interpolation operators must be compatible with physics (e.g. inf-sup conditions)
- Ordering of unknowns can make incomplete factorization behave similar to line smoothers
- Nonlinear multigrid (FAS) is worth trying if pointwise or block residuals are cheap, or globalization is especially challenging
- Monotone multigrid (Kornhuber) for variational inequalities
- Boundary conditions in subdomain problems ("optimized Schwarz")

Wrap-up

- PETSc can help you
 - · easily construct a code to experiment with ideas
 - scale an existing code base
 - incorporate more scalable or higher performance algorithms
 - attain high performance on a variety of architectures
 - debug and profile a parallel application (not discussed today)
 - package and distribute your code (e.g. graph algorithms, domain decomposition and multilevel solvers), --download-xxx
- I will be around most of today, find me to discuss
 - new and old features in PETSc
 - performance, scalability, and algorithms
 - design of new codes
 - integration with your existing application
- http://mcs.anl.gov/petsc
- petsc-users@mcs.anl.gov and petsc-dev@mcs.anl.gov
- petsc-maint@mcs.anl.gov