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Bathymetry and stickyness distribution

I Bathymetry:
I Aspect ratio ε = [H]/[x]� 1
I Need surface and bed slopes to be small

I Stickyness distribution:
I Limiting cases of plug flow versus vertical shear
I Stress ratio: λ = [τxz]/[τmembrane]
I Discontinuous: frozen to slippery transition at ice stream margins

I Bed slope is discontinuous
and of order 1.

I Taylor expansions no longer valid
I high resolution, subgrid parametrization, short time steps
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Hydrostatic equations for ice sheet flow
I Valid when wx� uz, independent of basal friction

(Schoof&Hindmarsh 2010)
I Eliminate p and w from Stokes by incompressibility:

3D elliptic system for u = (u,v)
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and slip boundary σ ·n = β 2u where
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I Q1 FEM with Newton-Krylov-Multigrid solver in PETSc:
src/snes/examples/tutorials/ex48.c





0 5 10 15 20 25 30 35 40 45
Newton iteration

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

103

N
on

lin
ea

rr
es

id
ua

l

Level 1 (2,048 nodes)
Level 2 (8,192 nodes)
Level 3 (36,864 nodes)
Level 4 (266,240 nodes)
Level 5 (2,101,248 nodes)

Grid-sequenced Newton-Krylov solution of test X. The solid lines
denote nonlinear iterations, and the dotted lines with × denote linear
residuals.



I Bathymetry is essentially discontinuous on any grid
I Shallow ice approximation produces oscillatory solutions
I Nonlinear and linear solvers have major problems or fail
I Grid sequenced Newton-Krylov multigrid works

as well as in the smooth case



0 5 10 15 20 25 30
Newton iteration

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102

N
on

lin
ea

rr
es

id
ua

l

Level 1 (4,400 nodes)
Level 2 (33,600 nodes)
Level 3 (262,400 nodes)
Level 4 (2,073,600 nodes)

Figure: Grid sequenced Newton-Krylov convergence for test Y . The “cliff”
has 58◦ angle in the red line (12×125 meter elements), 73◦ for the cyan line
(6×62 meter elements).
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Figure: Average number of Krylov iterations per nonlinear iteration. Each
nonlinear system was solved to a relative tolerance of 10−2.





Strong scaling on Blue Gene/P (Shaheen)
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Figure: Strong scaling on Shaheen for different size coarse levels problems
and different coarse level solvers. The straight lines on the strong scaling plot
have slope −1 which is optimal.



Weak scaling on Blue Gene/P (Shaheen)
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Figure: Weak scaling on Shaheen with a breakdown of time spent in different
phases of the solution process. Times are for the full grid-sequenced
problem, not just the finest level solve.



One high-accuracy solve
costs 30 times as much
as a residual evaluation

about 15 to reach truncation error

1000 times faster than existing methods

(Brown, Smith, Ahmadia 2011; submitted to JGR)
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Standard shallow approximations

I Shallow Ice Approximation (SIA):
I Purely local definition of velocity

u(z) =−(ρg)n
∫ z

b
A(T(z))(h− z)n

∣∣∣∇h
∣∣∣n−1

∇h

I No membrane stresses so only acceptable for λ � 1
I No solve so costs similar to one residual evaluation per time step

I “Shelfy Stream” Approximation (SSA)
I Need to solve elliptic problem posed in the map plane (2D):
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I No vertical shear so only acceptable when λ � 1
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Vertically-integrated Hybrids

I Daniel Goldberg 2010, same order of accuracy as hydrostatic
I Vertically average “membrane” part of hydrostatic equations
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I Solve by integrating z-dependence and η , solve linear elliptic
problem in map plane for u, iterate (Picard, ≈ 50 its)

I Evaluating viscosity (or a Newton residual) costs about
one hydrostatic residual

I Bueler and Brown 2009, used in PISM
I Ad-hoc combination of independent SSA and SIA solutions
I Lower formal order of accuracy, but nonlinear solve is strictly 2D



Non-Newtonian Stokes system: velocity u, pressure p

−∇ · (ηDu)+∇p− f = 0

∇ ·u = 0

Du = 1
2

(
∇u+(∇u)T)

γ(Du) = 1
2 Du :Du

η(γ) = B(θ , . . .)
(
γ0 + γ

) p−2
2

p= 1+ 1
n ≈

4
3

T = 1−n⊗n
with boundary conditions

(ηDu−p1) ·n =

{
0 free surface

−ρwzn ice-ocean interface

u = 0 frozen bed,θ < θ0

u ·n = gmelt(Tu, . . .)

T(ηDu−p1) ·n = gslip(Tu, . . .)

}
nonlinear slip,θ ≥ θ0

gslip(Tu) = βm(. . .)|Tu|m−1Tu

Navier m= 1, Weertman m≈ 1
3 , Coulomb m= 0.



Stokes challenges
Mass conservation is critical

I Staggered grid finite difference (hard to deal with geometry)

I Stabilized methods (conservation artifacts when non-smooth)
I Inf-sup stable mixed finite element method

I Use discontinuous pressure to enforce local mass conservation
I Inf-sup constant decays like

√
ε for Qk−Pdisc

k−1
I Sub-optimal order of accuracy for Qk−Qdisc

k−2

Solving saddle-point problems

I Not uniformly elliptic: solvers are much less robust

I Standard preconditioners do not work

I Coupled multigrid with Vanka smoothers offer best performance,
not robust for stretched grids or anisotropic viscosity

I Block preconditioners require approximate commutators,
fragile for strong anisotropy and non-smooth viscosity



Outlook

I We have textbook multigrid efficiency for hydrostatic equations

I All other models are currently slower at high resolution
because there are no scalable implementations

I Daniel Goldberg’s model could be as much as 4 times faster,
probably closer to 2 times

I Bueler & Brown’s model (or SSA) could be up to 10 times faster

I Technical challenges for Stokes

I Bathymetry is rough enough that we should solve Stokes

I Singularities: reentrant corners, transition from frozen
to slip bounadry conditions, grounded margins, grounding lines

I Implicit time integration
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