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Bathymetry and stickyness distribution

» Bathymetry:

» Aspect ratio € = [H]/[x] < 1

» Need surface and bed slopes to be small
» Stickyness distribution:

» Limiting cases of plug flow versus vertical shear
» Stress ratio: A = [Ty;|/[Tmembrane]
» Discontinuous: frozen to slippery transition at ice stream margins
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» Bed slope is discontinuous
and of order 1.

» Taylor expansions no longer valid
» high resolution, subgrid parametrization, short time steps



It’s all about algorithms (at the petascale)

Given, for example:
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Hydrostatic equations for ice sheet flow

» Valid when w, < u,, independent of basal friction
(Schoof&Hindmarsh 2010)
» Eliminate p and w from Stokes by incompressibility:
3D elliptic system for u = (u,v)

—V-[n (4ux+2vy uy+vye U

Vh =
uy+vy  2u,+4vy v1>}+pg h=0

B(6 —n
n(0,y) = (2)(70+?’)12" , nx3

1 1 1
Y= u§+v§+uxvy+ —(uy+vy)* + —u + —v?

4 4 4 4 z
and slip boundary ¢ - n = B2u where
ﬁz(Vb):ﬁg(f?g%-}’b)mTil, 0<m<1
1
Y= 5(142 +17)

» (01 FEM with Newton-Krylov-Multigrid solver in PETSc:
src/snes/examples/tutorials/ex48.c






Nonlinear residual
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Grid-sequenced Newton-Krylov solution of test X. The solid lines
denote nonlinear iterations, and the dotted lines with x denote linear
residuals.



Fesudocoior
Var. velocity magritids

» Bathymetry is essentially discontinuous on any grid
» Shallow ice approximation produces oscillatory solutions
» Nonlinear and linear solvers have major problems or fail

» Grid sequenced Newton-Krylov multigrid works
as well as in the smooth case
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Figure: Grid sequenced Newton-Krylov convergence for test Y. The “cliff”
has 58° angle in the red line (12 x 125 meter elements), 73° for the cyan line
(6 x 62 meter elements).
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Figure: Average number of Krylov iterations per nonlinear iteration. Each
nonlinear system was solved to a relative tolerance of 10~2.
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® “Strong scaling”

m execution time (7) decreases in Slope
inverse proportion to the number —
inverse proport oat| G poor

m fixed size problem (N) overall ’73,%

3

m often instead graphed as
reciprocal, “speedup”

® “Weak scaling” (memory
bound) Slope .+ poor

m execution time remains constant,
as problem size and processor T) N'x p
number are increased in
proportion

m fixed size problem per processor p

m also known as “Gustafson scaling” (c/o David Keyes)



Strong scaling on Blue Gene/P (Shaheen)
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Figure: Strong scaling on Shaheen for different size coarse levels problems
and different coarse level solvers. The straight lines on the strong scaling plot
have slope —1 which is optimal.



Weak scaling on Blue Gene/P (Shaheen)
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Figure: Weak scaling on Shaheen with a breakdown of time spent in different
phases of the solution process. Times are for the full grid-sequenced
problem, not just the finest level solve.



One high-accuracy solve

costs 30 times as much
as a residual evaluation

about 15 to reach truncation error



One high-accuracy solve

costs 30 times as much
as a residual evaluation

about 15 to reach truncation error
1000 times faster than existing methods

(Brown, Smith, Ahmadia 2011; submitted to JGR)



Standard shallow approximations

» Shallow Ice Approximation (SIA):
» Purely local definition of velocity

pg/A J(h—z)"

» No membrane stresses so only acceptable for A > 1
» No solve so costs similar to one residual evaluation per time step

» “Shelfy Stream” Approximation (SSA)
» Need to solve elliptic problem posed in the map plane (2D):

s 47, +29, Vot 2 _—
v {Iﬁ( Votd, 20, +4v, +B°u+pgHVh =0

n(6,y) = ( )

(o+7) =, w3
1
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» No vertical shear so only acceptable when A < 1
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Vertically-integrated Hybrids

» Daniel Goldberg 2010, same order of accuracy as hydrostatic
» Vertically average “membrane” part of hydrostatic equations
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» Solve by integrating z-dependence and 7, solve linear elliptic
problem in map plane for u, iterate (Picard, ~ 50 its)

» Evaluating viscosity (or a Newton residual) costs about
one hydrostatic residual

» Bueler and Brown 2009, used in PISM

» Ad-hoc combination of independent SSA and SIA solutions
» Lower formal order of accuracy, but nonlinear solve is strictly 2D



Non-Newtonian Stokes system: velocity u, pressure p

Du= 1% (Vu+(Vu)")

Du) = Du:Du
—V-(MDu)+Vp—f=0 7Du) =

Vou=0 n(y)=B(6,...)(n+7) *
p=l+i~3
T=1-n®n
with boundary conditions
0 free surface
(nDu—pl)-n= . .
—pwzn ice-ocean interface
u=20 frozen bed, 8 < 6
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1
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}nonlinear slip, 8 > 6y

Navierm =1, Weertman m ~ Coulomb m = 0.



Stokes challenges
Mass conservation is critical

» Staggered grid finite difference (hard to deal with geometry)
» Stabilized methods (conservation artifacts when non-smooth)

> Inf-sup stable mixed finite element method

» Use discontinuous pressure to enforce local mass conservation
» Inf-sup constant decays like /€ for Qy — ngcl

» Sub-optimal order of accuracy for Qy — Qgifcz

Solving saddle-point problems

v

Not uniformly elliptic: solvers are much less robust

v

Standard preconditioners do not work

v

Coupled multigrid with Vanka smoothers offer best performance,
not robust for stretched grids or anisotropic viscosity

v

Block preconditioners require approximate commutators,
fragile for strong anisotropy and non-smooth viscosity



Outlook

» We have textbook multigrid efficiency for hydrostatic equations

» All other models are currently slower at high resolution
because there are no scalable implementations

» Daniel Goldberg’s model could be as much as 4 times faster,
probably closer to 2 times

» Bueler & Brown’s model (or SSA) could be up to 10 times faster
» Technical challenges for Stokes
» Bathymetry is rough enough that we should solve Stokes

» Singularities: reentrant corners, transition from frozen
to slip bounadry conditions, grounded margins, grounding lines

> Implicit time integration
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