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Antarctic Ocean-Ice Interaction

Bindschadler 2008
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Hydrostatic equations for ice sheet flow

» Valid when w, < u,, independent of basal friction
(Schoof&Hindmarsh 2010)
» Eliminate p and w from Stokes by incompressibility:
3D elliptic system for u = (u,v)
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» (01 FEM with Newton-Krylov-Multigrid solver in PETSc:
src/snes/examples/tutorials/ex48.c






Nonlinear residual
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Grid-sequenced Newton-Krylov solution of test X. The solid lines
denote nonlinear iterations, and the dotted lines with x denote linear
residuals.



Fesudocoior
Var. velocity magritids

» Bathymetry is essentially discontinuous on any grid
» Shallow ice approximation produces oscillatory solutions
» Nonlinear and linear solvers have major problems or fail

» Grid sequenced Newton-Krylov multigrid works
as well as in the smooth case
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Figure: Grid sequenced Newton-Krylov convergence for test Y. The “cliff”
has 58° angle in the red line (12 x 125 meter elements), 73° for the cyan line
(6 x 62 meter elements).
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Figure: Average number of Krylov iterations per nonlinear iteration. Each
nonlinear system was solved to a relative tolerance of 10~2.
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Strong scaling on Blue Gene/P (Shaheen)
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Figure: Strong scaling on Shaheen for different size coarse levels problems
and different coarse level solvers. The straight lines on the strong scaling plot
have slope —1 which is optimal.



Weak scaling on Blue Gene/P (Shaheen)
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Figure: Weak scaling on Shaheen with a breakdown of time spent in different
phases of the solution process. Times are for the full grid-sequenced
problem, not just the finest level solve.






Non-Newtonian Stokes system: velocity u, pressure p
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Other critical equations
» Mesh motion: x

V.6=0 G:/,L[ZDw+(Vw)TVw +A|Vw|1
surface: (x—u)-n=qpr, To-n=0 W=Xx—X0

» Heat transport: ® (enthalpy)
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» ALE advection » Moisture diffusion/Darcy flow
» Thermal diffusion » Strain heating
Note: x(®) and g, (®) are very sensitive near ® = Q
Summary of primal variables in DAE

u  velocity algebraic

p  pressure algebraic

x mesh location algebraic in domain, differential at surface

® enthalpy differential



Stokes challenges
Mass conservation is critical

» Staggered grid finite difference (hard to deal with geometry)
» Stabilized methods (conservation artifacts when non-smooth)

> Inf-sup stable mixed finite element method

» Use discontinuous pressure to enforce local mass conservation
» Inf-sup constant decays like /€ for Qy — ngcl

» Sub-optimal order of accuracy for Qy — Qgifcz

Solving saddle-point problems

v

Not uniformly elliptic: solvers are much less robust

v

Standard preconditioners do not work

v

Coupled multigrid with Vanka smoothers offer best performance,
not robust for stretched grids or anisotropic viscosity

v

Block preconditioners require approximate commutators,
fragile for strong anisotropy and non-smooth viscosity



Construction of conservative nodal normals
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» Exact conservation even with rough surfaces
» Definition is robust in 2D and for first-order elements in 3D
» [ ¢" =0 for corner basis function of undeformed P, triangle
» May be negative for sufficiently deformed quadrilaterals
» Mesh motion should use normals from CAD model
» Difference between CAD normal and conservative normal
introduces correction term to conserve mass within the mesh
» Anomolous velocities if disagreement is large
(fast moving mesh, rough surface)
» Normal field not as smooth/accurate as desirable

(and achievable with non-conservative normals)
» Mostly problematic for surface tension
» Walkley et al, On calculation of normals in free-surface flow
problems, 2004



Need for well-balancing
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“No” boundary condition

» Integration by parts produces

/v-TG-n, o =nDu—pl, T=1-n®n
r

» Continuous weak form requires either

>

>

Dirichlet: ulr =f = v|[r=0
Neumann/Robin: ¢ - n|r = g(u,p)

» Discrete problem allows integration of o - n “as is”

>

>

>

Extends validity of equations to include I
Not valid for continuum equations
Introduced by Papanastasiou, Malamataris, and Ellwood, 1992 for
Navier-Stokes outflow boundaries
Griffiths, The ‘no boundary condition’ outflow boundary condition,
1997
» Proves L™ order of accuracy &((h+1/Pe)P*1)
for Galerkin finite elements of order p (linear advection-diffusion)
» Demonstrates equivalence with collocation at Radau points
in outflow element

Used in slip boundary conditions by Behr 2004



ALE form

After discretization in time (o o< 1/Af) we have a Jacobian
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» pseudo-elasticity for mesh motion
» (X —u)-n=accumulution

» “just” geometry

» Stokes problem

» temperature dependence of rheology
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» convective terms and strain heating in heat transport

» thermal advection-diffusion
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Multi-physics coupling in PETSc

» package each “physics”
independently

» solve single-physics and
coupled problems

» semi-implicit and fully implicit
» reuse residual and Jacobian

evaluation unmodified

» direct solvers and efficient
fieldsplit without recompilation

» use the best possible matrix
format for each physics
(symmetric block size 3)

» matrix-free anywhere

» multiple levels of nesting



Multi-physics coupling in PETSc
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Multi-physics coupling in PETSc
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Multi-physics coupling in PETSc

Stokes

Ice
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Multi-physics coupling in PETSc

» package each “physics”

independently
Stokes » solve single-physics and
coupled problems
Ice » semi-implicit and fully implicit
> reuse residual and Jacobian

evaluation unmodified

» direct solvers and efficient
[ Boundary Layer J fieldsplit without recompilation

» use the best possible matrix
format for each physics
[ Ocean ] (symmetric block size 3)

» matrix-free anywhere

» multiple levels of nesting



Outlook

» We have textbook multigrid efficiency for hydrostatic equations
» Technical challenges for Stokes
» Local conservation is critical, well-balanced slip

» Singularities: reentrant corners, transition from frozen
to slip bounadry conditions, grounded margins, grounding lines

» Stiff geometric coupling terms
» Finally a good algebraic interface for tightly-coupled multiphysics
» IMEX time integration: additive Runge-Kutta

Tools
» PETSchttp://mcs.anl.gov/petsc
» ML, Hypre, MUMPS
» ITAPS http://itaps.org
» MOAB, CGM, Lasso


http://mcs.anl.gov/petsc
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