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Hydrostatic equations for ice sheet flow
I Valid when wx� uz, independent of basal friction

(Schoof&Hindmarsh 2010)
I Eliminate p and w from Stokes by incompressibility:

3D elliptic system for u = (u,v)
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and slip boundary σ ·n = β 2u where
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I Q1 FEM with Newton-Krylov-Multigrid solver in PETSc:
src/snes/examples/tutorials/ex48.c
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Grid-sequenced Newton-Krylov solution of test X. The solid lines
denote nonlinear iterations, and the dotted lines with × denote linear
residuals.



I Bathymetry is essentially discontinuous on any grid
I Shallow ice approximation produces oscillatory solutions
I Nonlinear and linear solvers have major problems or fail
I Grid sequenced Newton-Krylov multigrid works

as well as in the smooth case
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Figure: Grid sequenced Newton-Krylov convergence for test Y . The “cliff”
has 58◦ angle in the red line (12×125 meter elements), 73◦ for the cyan line
(6×62 meter elements).
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Figure: Average number of Krylov iterations per nonlinear iteration. Each
nonlinear system was solved to a relative tolerance of 10−2.



Strong scaling on Blue Gene/P (Shaheen)
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Figure: Strong scaling on Shaheen for different size coarse levels problems
and different coarse level solvers. The straight lines on the strong scaling plot
have slope −1 which is optimal.



Weak scaling on Blue Gene/P (Shaheen)
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Figure: Weak scaling on Shaheen with a breakdown of time spent in different
phases of the solution process. Times are for the full grid-sequenced
problem, not just the finest level solve.





Non-Newtonian Stokes system: velocity u, pressure p

−∇ · (ηDu)+∇p− f = 0

∇ ·u = 0

Du = 1
2

(
∇u+(∇u)T)

γ(Du) = 1
2 Du :Du

η(γ) = B(Θ, . . .)
(
γ0 + γ

) p−2
2

p= 1+ 1
n ≈

4
3

T = 1−n⊗n
with boundary conditions

(ηDu−p1) ·n =

{
0 free surface

−ρwzn ice-ocean interface

u = 0 frozen bed,Θ < Θ0

u ·n = gmelt(Tu, . . .)

T(ηDu−p1) ·n = gslip(Tu, . . .)

}
nonlinear slip,Θ≥Θ0

gslip(Tu) = βm(. . .)|Tu|m−1Tu

Navier m= 1, Weertman m≈ 1
3 , Coulomb m= 0.



Other critical equations
I Mesh motion: x

−∇ ·σ = 0

surface: (ẋ−u) ·n = qBL, Tσ ·n = 0

σ = µ

[
2Dw+(∇w)T

∇w
]
+λ |∇w|1

w = x− x0

I Heat transport: Θ (enthalpy)

∂

∂ t
Θ+(u− ẋ) ·∇Θ

−∇ ·
[
κT(Θ)∇T(Θ)+κω∇ω(Θ)+qD(Θ)

]
−ηDu :Du = 0

I ALE advection
I Thermal diffusion

I Moisture diffusion/Darcy flow
I Strain heating

Note: κ(Θ) and qD(Θ) are very sensitive near Θ = Θ0

Summary of primal variables in DAE
u velocity algebraic
p pressure algebraic
x mesh location algebraic in domain, differential at surface
Θ enthalpy differential



Stokes challenges
Mass conservation is critical

I Staggered grid finite difference (hard to deal with geometry)

I Stabilized methods (conservation artifacts when non-smooth)
I Inf-sup stable mixed finite element method

I Use discontinuous pressure to enforce local mass conservation
I Inf-sup constant decays like

√
ε for Qk−Pdisc

k−1
I Sub-optimal order of accuracy for Qk−Qdisc

k−2

Solving saddle-point problems

I Not uniformly elliptic: solvers are much less robust

I Standard preconditioners do not work

I Coupled multigrid with Vanka smoothers offer best performance,
not robust for stretched grids or anisotropic viscosity

I Block preconditioners require approximate commutators,
fragile for strong anisotropy and non-smooth viscosity



Construction of conservative nodal normals

ni =
∫

Γ

φ
in

I Exact conservation even with rough surfaces
I Definition is robust in 2D and for first-order elements in 3D
I
∫

Γ
φ i = 0 for corner basis function of undeformed P2 triangle

I May be negative for sufficiently deformed quadrilaterals
I Mesh motion should use normals from CAD model

I Difference between CAD normal and conservative normal
introduces correction term to conserve mass within the mesh

I Anomolous velocities if disagreement is large
(fast moving mesh, rough surface)

I Normal field not as smooth/accurate as desirable
(and achievable with non-conservative normals)

I Mostly problematic for surface tension
I Walkley et al, On calculation of normals in free-surface flow

problems, 2004



Need for well-balancing

(Behr, On the application of slip boundary condition on curved surfaces, 2004)



“No” boundary condition
I Integration by parts produces∫

Γ

v ·Tσ ·n, σ = ηDu−p1, T = 1−n⊗n

I Continuous weak form requires either
I Dirichlet: u|Γ = f =⇒ v|Γ = 0
I Neumann/Robin: σ ·n|Γ = g(u,p)

I Discrete problem allows integration of σ ·n “as is”
I Extends validity of equations to include Γ

I Not valid for continuum equations
I Introduced by Papanastasiou, Malamataris, and Ellwood, 1992 for

Navier-Stokes outflow boundaries
I Griffiths, The ‘no boundary condition’ outflow boundary condition,

1997
I Proves L∞ order of accuracy O((h+1/Pe)p+1)

for Galerkin finite elements of order p (linear advection-diffusion)
I Demonstrates equivalence with collocation at Radau points

in outflow element
I Used in slip boundary conditions by Behr 2004



ALE form
After discretization in time (α ∝ 1/∆t) we have a Jacobian

AII AIΓ

αMΓΓ −NΓΓ
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I DI
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uI
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p
Θ


I pseudo-elasticity for mesh motion

I (ẋ−u) ·n = accumulution

I “just” geometry

I Stokes problem

I temperature dependence of rheology

I convective terms and strain heating in heat transport

I thermal advection-diffusion



Multi-physics coupling in PETSc

Velocity Pressure

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers and efficient
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting
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Multi-physics coupling in PETSc
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Multi-physics coupling in PETSc
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Outlook

I We have textbook multigrid efficiency for hydrostatic equations

I Technical challenges for Stokes

I Local conservation is critical, well-balanced slip

I Singularities: reentrant corners, transition from frozen
to slip bounadry conditions, grounded margins, grounding lines

I Stiff geometric coupling terms

I Finally a good algebraic interface for tightly-coupled multiphysics

I IMEX time integration: additive Runge-Kutta

Tools
I PETSc http://mcs.anl.gov/petsc

I ML, Hypre, MUMPS
I ITAPS http://itaps.org

I MOAB, CGM, Lasso

http://mcs.anl.gov/petsc
http://itaps.org
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