
Tightly coupled solvers with loosely coupled software
Modular linear algebra for multi-physics

Jed Brown

Laboratory of Hydrology, Hydraulics, and Glaciology
ETH Zürich

KAUST 2011-03-27

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 1 / 31

Outline

1 Throughput for matrices

2 Stiffness

3 Coupling

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 2 / 31

Throughput for matrices

Outline

1 Throughput for matrices

2 Stiffness

3 Coupling

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 3 / 31

Throughput for matrices

Bottlenecks of (Jacobian-free) Newton-Krylov

• Matrix assembly
• integration/fluxes: FPU
• insertion: memory/branching

• Preconditioner setup
• coarse level operators
• overlapping subdomains
• (incomplete) factorization

• Preconditioner application
• triangular solves/relaxation: memory
• coarse levels: network latency

• Matrix multiplication
• Sparse storage: memory
• Matrix-free: FPU

• Globalization

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 4 / 31

Throughput for matrices

Hardware capabilities

Floating point unit
Recent Intel: each core can issue

• 1 packed add (latency 3)

• 1 packed mult (latency 5)

• One can include an aligned read

• Out of Order execution

• Peak: 10 Gflop/s (double)

Memory

• ∼ 250 cycle latency

• 5.3 GB/s bandwidth

• 1 double load / 3.7 cycles

• Pay by the cache line (32/64 B)

• L2 cache: ∼ 10 cycle latency

(Oliker et al. 2008)
Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 5 / 31

Throughput for matrices

Memory Bandwidth
• Stream Triad benchmark (GB/s): w ← αx + y

• Sparse matrix-vector product: 6 bytes per flop

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 6 / 31

Throughput for matrices

Sparse Mat-Vec performance model

Compressed Sparse Row format (AIJ)
For m×n matrix with N nonzeros

ai row starts, length m + 1

aj column indices, length N, range [0,n−1)

aa nonzero entries, length N, scalar values

y ← y + Ax
for (i =0; i <m; i ++)

for (j = a i [i] ; j < a i [i + 1] ; j ++)
y [i] += aa [j] ∗ x [a j [j]] ;

• One add and one multiply per inner loop

• Scalar aa[j] and integer aj[j] only used once

• Must load aj[j] to read from x, may not reuse cache well

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 7 / 31

Throughput for matrices

Optimizing Sparse Mat-Vec

• Order unknows so that vector reuses cache (Reverse Cuthill-McKee)
• Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
• Usually improves strength of ILU and SOR

• Coalesce indices for adjacent rows with same nonzero pattern (Inodes)
• Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)/i
• Can do block SOR (much stronger than scalar SOR)
• Default in PETSc, turn off with -mat_no_inode
• Requires ordering unknowns so that fields are interlaced, this is (much)

better for memory use anyway

• Use explicit blocking, hold one index per block (BAIJ format)
• Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)/b2

• Block SOR and factorization
• Symbolic factorization works with blocks (much cheaper)
• Very regular memory access, unrolled dense kernels
• Faster insertion: MatSetValuesBlocked()

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 8 / 31

Throughput for matrices

Performance of blocked matrix formats

XXXXXXXXXXXKernel
Format Core 2, 1 process Opteron, 4 processes

AIJ BAIJ SBAIJ AIJ BAIJ SBAIJ
MatMult 812 985 1507 2226 2918 3119
MatSolve 718 957 955 1573 2869 2858

Throughput (Mflop/s) for different matrix formats on Core 2 Duo (P8700) and
Opteron 2356 (two sockets). MatSolve is a forward- and back-solve with
incomplete Cholesky factors. The AIJ format is using “inodes” which unrolls
across consecutive rows with identical nonzero pattern (pairs in this case).

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 9 / 31

Throughput for matrices

Optimizing unassembled Mat-Vec

• High order spatial discretizations do more work per node
• Dense tensor product kernel (like small BLAS3)
• Cubic (Q3) elements in 3D can achieve > 70% of peak FPU

(compare to < 6% for assembled operators on multicore)
• Can store Jacobian information at quadrature points

(usually pays off for Q2 and higher in 3D)
• Spectral, WENO, DG, FD
• Often still need an assembled operator for preconditioning

• Boundary element methods
• Dense kernels
• Fast Multipole Method (FMM)

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 10 / 31

Throughput for matrices

Power-law Stokes Scaling

Only assemble Q1 matrices, ML+PETSc smoothers for elliptic pieces
(fairly easy geometry and coefficients, Brown 2010)

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 11 / 31

Throughput for matrices

What you can do

• Speak at the most specific language possible
• 3D structural analysis: symmetric block size 3
• 3D compressible flow: nonsymmetric block size 5

• Order unknowns for cache reuse (low-bandwidth like RCM is good)
• Dual order

• Assemble a low-order discretization
• Provide matrix-free high-order operator

(FD, ADI, caching at quadrature points)
• More robust with SOR and ILU due to h-ellipticity
• Sometimes Picard linearization has a more compact stencil

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 12 / 31

Stiffness

Outline

1 Throughput for matrices

2 Stiffness

3 Coupling

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 13 / 31

Stiffness

Shallow water traveling vortex with Coriolis.
Moussau et al, 2002.

Linear reaction-diffusion, split method converges to
the wrong steady state . Knoll et al, 2003.

• CFL too restrictive for explicit
• But hyperbolic systems do not weak

scale if you care about phase
• Naive semi-implicit has poor accuracy,

stability, robustness
• Good IMEX exists, but still need to treat

stiff part implicitly

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 14 / 31

Stiffness

Coupled approach to multiphysics

• Smooth all components together
• Block SOR is the most popular
• Vanka smoothers for indefinite problems
• Block ILU often more robust

• Scaling between fields is critical
• Indefiniteness

• Make smoothers and interpolants respect inf-sup condition
• Difficult to handle anisotropy
• Can use Schur field-split to define a smoother

• Transport
• Define smoother in terms of first-order upwind discretization (h-ellipticity)
• Evaluate residuals using high-order discretization
• Use Schur field-split to “parabolize” at the top level or to define smoother

on levels

• Open research area, hard to write modular software

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 15 / 31

Stiffness

Anisotropy, Heterogeneity

• Anisotropy
• Semi-coarsening
• Line smoothers
• Order unknowns so that incomplete factorization “includes” a line smoother

• Heterogeneity
• Make coarse grids align
• Strong smoothers
• Energy-minimizing interpolants

• Mostly possible with generic software components

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 16 / 31

Stiffness

Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
• Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative][

A
D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

• Gauss-Seidel inspired, works when fields are loosely coupled
• Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[
1

CA−1 1

]−1

, S = D−CA−1B

• robust (exact factorization), can often drop lower block
• how to precondition S which is usually dense?

• interpret as differential operators, use approximate commutators

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 17 / 31

Stiffness

Physics-based preconditioners (semi-implicit method)
Shallow water with stiff gravity wave
h is hydrostatic pressure, u is velocity,

√
gh is fast wave speed

ht − (uh)x = 0

(uh)t + (u2h +
1
2

gh2)x = 0
Semi-implicit method
Suppress spatial discretization, discretize in time, implicitly for the terms contributing to
the gravity wave

hn+1−hn

∆t
+ (uh)n+1

x = 0

(uh)n+1− (uh)n

∆t
+ (u2h)n

x + g(hnhn+1)x = 0

Rearrange, eliminating (uh)n+1

hn+1−hn

∆t
−∆t(ghnhn+1

x)x =−Sn
x

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 18 / 31

Stiffness

Delta form
• Preconditioner should work like the Newton step

−F(x) 7→ δx

• Recast semi-implicit method in delta form

δh
∆t

+ (δuh)x =−F0,
δuh
∆t

+ ghn(δh)x =−F1, Ĵ

(1
∆t div

ghn∇
1

∆t

)
• Eliminate δuh

δh
∆t
−∆t(ghn(δh)x)x =−F0 + (∆tF1)x , S ∼ 1

∆t
−g∆t divhn

∇

• Solve for δh, then evaluate

δuh =−∆t
[
ghn(δh)x −F1

]
• Fully implicit solver

• Is nonlinearly consistent (no splitting error), can be high-order in time
• Leverages existing code when a semi-implicit method has been

implemented
• Allows efficient bifurcation analysis, steady-state analysis

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 19 / 31

Stiffness

Stokes
Weak form of the Newton step
Find (u,p) such that∫

Ω
(Dv)T [

η1 + η
′Dw⊗Dw

]
Du

−p∇ · v−q∇ ·u =−v ·F(w) ∀(v ,q)

Matrix [
A(w) BT

B

](
u
p

)
=−

(
Fu(w)

0

)

Block factorization[
A BT

B

]
=

[
1

BA−1 1

][
A BT

S

]
=

[
A
B S

][
1 A−1BT

1

]
where the Schur complement is

S =−BA−1BT .

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 20 / 31

Stiffness

Properties of the Schur complement

Block factorization[
A BT

B

]
=

[
1

BA−1 1

][
A BT

S

]
=

[
A
B S

][
1 A−1BT

1

]
where

S =−BA−1BT .

• S is symmetric negative definite if A is SPD and B has full rank (discrete
inf-sup condition)

• S is dense

• We only need to multiply B,BT with vectors.

• We need preconditioners for A and S.

• Any definite preconditioner can be used for A.

• It’s not obvious how to precondition S, more on that later.

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 21 / 31

Stiffness

Preconitioning the Schur complement
• S =−BA−1BT is dense so we can’t form it, we need S−1.

Physics-based commutator: anisotropic pressure diffusion

vT A(w)u ∼
∫

(Dv)T [
η1 + η

′Dw⊗Dw
]
Du

• We would like to find an operator Ap such that

−S = BA−1BT ≈ BBT A−1
p =: PS

so that
P−1

S = Ap(BBT)−1

• Note
BBT ∼ (−∇·)∇ =−∆

corresponds to a Laplacian in the pressure space (multigrid).
• If η ′,∇η � 1 then Ap ∼−η∆ so P−1

S = η1

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 22 / 31

Stiffness

Least squares commutator
• Schur complement

S =−BA−1BT

Suppose B is square and nonsingular. Then

S−1 =−B−T AB−1.

B is not square, replace B−1 with Moore-Penrose pseudoinverse

B† = BT (BBT)−1, (BT)† = (BBT)−1B.

Then
P−1

S =−(BBT)−1BABT (BBT)−1.

• Requires 2 Poisson preconditioners for (BBT)−1 per iteration
• Better with scaling, from mass matrices and effective viscosity (Elman et al.

2006, May & Moresi 2008)
• -pc_type fieldsplit -pc_fieldsplit_type schur
-fieldsplit_p_pc_type lsc -fieldsplit_p_lsc_pc_type
mg

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 23 / 31

Stiffness

Unsteady Navier-Stokes
Strong form

J(w)

[
u
p

]
∼
{

ρ(αu + w ·∇u + u ·∇w)−η∇2u + ∇p =−F(w)
∇ ·u = 0

Matrix form[
A(w) BT

B

]
=

[
1

BA−1 1

][
A BT

S

]
S =−BA−1BT

Define A(w) in pressure space

• Want PS = (BBT)A−1
p ≈ BA−1BT , P−1

S = Ap(BBT)−1

• Ap ∼ ρ

(
αp + w ·∇p + p tr(∇w)

)
−η∇2p

• p tr(∇w) term is questionable, not needed for Picard

• Almost mesh-independent, weak Reynolds number dependence

(Silvester, Elman, Kay, Wathen. Efficient preconditioning of the linearized Navier-Stokes equations for

incompressible flow. 2001) (Elman et al. 2005-2010)
Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 24 / 31

Coupling

Outline

1 Throughput for matrices

2 Stiffness

3 Coupling

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 25 / 31

Coupling

Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 26 / 31

Coupling

Overwhelmed with choices

• If you have a hard problem, no black-box solver will work well
• Everything in PETSc has a plugin architecture

• Put in the “special sauce” for your problem
• Your implementations are first-class

• PETSc exposes an algebra of composition at runtime
• Build a good solver from existing components, at runtime
• Multigrid, domain decomposition, factorization, relaxation, field-split
• Choose matrix format that works best with your preconditioner
• structural blocking, Neumann matrices, monolithic versus nested

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 27 / 31

Coupling

Multi-physics coupling in PETSc

Velocity Pressure

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 28 / 31

Coupling

Multi-physics coupling in PETSc

Velocity PressureStokes

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 28 / 31

Coupling

Multi-physics coupling in PETSc

Velocity PressureStokes

Enthalpy Geometry

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 28 / 31

Coupling

Multi-physics coupling in PETSc

Velocity PressureStokes

Enthalpy Geometry

Ice

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 28 / 31

Coupling

Multi-physics coupling in PETSc

Velocity PressureStokes

Enthalpy Geometry

Ice

Boundary Layer

Ocean

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 28 / 31

Coupling

MatNest: a matrix format for field-split
AII AIΓ

αMΓΓ −NΓΓ

GII GΓI BII BIΓ CT
I DI

GIΓ GΓΓ BΓI BΓΓ CT
Γ DΓ

GIp GΓp CI CΓ

αEI αEΓ FI FΓ αMΘ + J




xI

xΓ

uI

uΓ

p
Θ


• pseudo-elasticity for mesh motion

• (ẋ−u) ·n = accumulution

• “just” geometry

• Stokes problem

• temperature dependence of rheology

• ALE and strain heating in heat transport

• thermal advection-diffusion

• Blocks stored
separately
no-copy access

• MatGetSubMatrix
API
looks same as “normal”
matrices

• Nesting can be
recursive

• Implements standard
linear algebra
operations

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 29 / 31

Coupling

MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *B);

• Primarily for assembly
• B is not guaranteed to implement MatMult
• The communicator for B is not specified,

only safe to use non-collective ops (unless you check)

• IS represents an index set, includes a block size and communicator

• MatSetValuesBlockedLocal() is implemented

• MatNest returns nested submatrix, no-copy

• No-copy for Neumann-Neumann formats
(unassembled across procs, e.g. BDDC, FETI-DP)

• Most other matrices return a lightweight proxy Mat
• COMM_SELF
• Values not copied, does not implement MatMult
• Translates indices to the language of the parent matrix
• Multiple levels of nesting are flattened

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 30 / 31

Coupling

Wrap-up

• Software modularity while retaining access to good solvers
• Reuse single-physics modules
• Unintrusive “special sauce” (once you figure it out)

• Choose the matrix format at runtime, best for your preconditioner
• monolithic, nested, Neumann
• scalar or block, symmetric

• Break into pieces that are “understood”, keep some block structure for
high throughput

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 31 / 31

	Throughput for matrices
	Stiffness
	Coupling

