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Throughput for matrices

Bottlenecks of (Jacobian-free) Newton-Krylov

• Matrix assembly
• integration/fluxes: FPU
• insertion: memory/branching

• Preconditioner setup
• coarse level operators
• overlapping subdomains
• (incomplete) factorization

• Preconditioner application
• triangular solves/relaxation: memory
• coarse levels: network latency

• Matrix multiplication
• Sparse storage: memory
• Matrix-free: FPU

• Globalization
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Throughput for matrices

Hardware capabilities

Floating point unit
Recent Intel: each core can issue

• 1 packed add (latency 3)

• 1 packed mult (latency 5)

• One can include an aligned read

• Out of Order execution

• Peak: 10 Gflop/s (double)

Memory

• ∼ 250 cycle latency

• 5.3 GB/s bandwidth

• 1 double load / 3.7 cycles

• Pay by the cache line (32/64 B)

• L2 cache: ∼ 10 cycle latency

(Oliker et al. 2008)
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Throughput for matrices

Memory Bandwidth
• Stream Triad benchmark (GB/s): w ← αx + y

• Sparse matrix-vector product: 6 bytes per flop
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Throughput for matrices

Sparse Mat-Vec performance model

Compressed Sparse Row format (AIJ)
For m×n matrix with N nonzeros

ai row starts, length m + 1

aj column indices, length N, range [0,n−1)

aa nonzero entries, length N, scalar values

y ← y + Ax
for ( i =0; i <m; i ++)

for ( j = a i [ i ] ; j < a i [ i + 1 ] ; j ++)
y [ i ] += aa [ j ] ∗ x [ a j [ j ] ] ;

• One add and one multiply per inner loop

• Scalar aa[j] and integer aj[j] only used once

• Must load aj[j] to read from x, may not reuse cache well
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Throughput for matrices

Optimizing Sparse Mat-Vec

• Order unknows so that vector reuses cache (Reverse Cuthill-McKee)
• Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)
• Usually improves strength of ILU and SOR

• Coalesce indices for adjacent rows with same nonzero pattern (Inodes)
• Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)/i
• Can do block SOR (much stronger than scalar SOR)
• Default in PETSc, turn off with -mat_no_inode
• Requires ordering unknowns so that fields are interlaced, this is (much)

better for memory use anyway

• Use explicit blocking, hold one index per block (BAIJ format)
• Optimal: (2 flops)(bandwidth)

sizeof(Scalar)+sizeof(Int)/b2

• Block SOR and factorization
• Symbolic factorization works with blocks (much cheaper)
• Very regular memory access, unrolled dense kernels
• Faster insertion: MatSetValuesBlocked()
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Throughput for matrices

Performance of blocked matrix formats

XXXXXXXXXXXKernel
Format Core 2, 1 process Opteron, 4 processes

AIJ BAIJ SBAIJ AIJ BAIJ SBAIJ
MatMult 812 985 1507 2226 2918 3119
MatSolve 718 957 955 1573 2869 2858

Throughput (Mflop/s) for different matrix formats on Core 2 Duo (P8700) and
Opteron 2356 (two sockets). MatSolve is a forward- and back-solve with
incomplete Cholesky factors. The AIJ format is using “inodes” which unrolls
across consecutive rows with identical nonzero pattern (pairs in this case).
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Throughput for matrices

Optimizing unassembled Mat-Vec

• High order spatial discretizations do more work per node
• Dense tensor product kernel (like small BLAS3)
• Cubic (Q3) elements in 3D can achieve > 70% of peak FPU

(compare to < 6% for assembled operators on multicore)
• Can store Jacobian information at quadrature points

(usually pays off for Q2 and higher in 3D)
• Spectral, WENO, DG, FD
• Often still need an assembled operator for preconditioning

• Boundary element methods
• Dense kernels
• Fast Multipole Method (FMM)
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Throughput for matrices

Power-law Stokes Scaling

Only assemble Q1 matrices, ML+PETSc smoothers for elliptic pieces
(fairly easy geometry and coefficients, Brown 2010)
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Throughput for matrices

What you can do

• Speak at the most specific language possible
• 3D structural analysis: symmetric block size 3
• 3D compressible flow: nonsymmetric block size 5

• Order unknowns for cache reuse (low-bandwidth like RCM is good)
• Dual order

• Assemble a low-order discretization
• Provide matrix-free high-order operator

(FD, ADI, caching at quadrature points)
• More robust with SOR and ILU due to h-ellipticity
• Sometimes Picard linearization has a more compact stencil
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Stiffness

Shallow water traveling vortex with Coriolis.
Moussau et al, 2002.

Linear reaction-diffusion, split method converges to
the wrong steady state . Knoll et al, 2003.

• CFL too restrictive for explicit
• But hyperbolic systems do not weak

scale if you care about phase
• Naive semi-implicit has poor accuracy,

stability, robustness
• Good IMEX exists, but still need to treat

stiff part implicitly
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Stiffness

Coupled approach to multiphysics

• Smooth all components together
• Block SOR is the most popular
• Vanka smoothers for indefinite problems
• Block ILU often more robust

• Scaling between fields is critical
• Indefiniteness

• Make smoothers and interpolants respect inf-sup condition
• Difficult to handle anisotropy
• Can use Schur field-split to define a smoother

• Transport
• Define smoother in terms of first-order upwind discretization (h-ellipticity)
• Evaluate residuals using high-order discretization
• Use Schur field-split to “parabolize” at the top level or to define smoother

on levels

• Open research area, hard to write modular software
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Stiffness

Anisotropy, Heterogeneity

• Anisotropy
• Semi-coarsening
• Line smoothers
• Order unknowns so that incomplete factorization “includes” a line smoother

• Heterogeneity
• Make coarse grids align
• Strong smoothers
• Energy-minimizing interpolants

• Mostly possible with generic software components
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Stiffness

Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
• Relaxation: -pc_fieldsplit_type
[additive,multiplicative,symmetric_multiplicative][

A
D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

• Gauss-Seidel inspired, works when fields are loosely coupled
• Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[
1

CA−1 1

]−1

, S = D−CA−1B

• robust (exact factorization), can often drop lower block
• how to precondition S which is usually dense?

• interpret as differential operators, use approximate commutators
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Stiffness

Physics-based preconditioners (semi-implicit method)
Shallow water with stiff gravity wave
h is hydrostatic pressure, u is velocity,

√
gh is fast wave speed

ht − (uh)x = 0

(uh)t + (u2h +
1
2

gh2)x = 0
Semi-implicit method
Suppress spatial discretization, discretize in time, implicitly for the terms contributing to
the gravity wave

hn+1−hn

∆t
+ (uh)n+1

x = 0

(uh)n+1− (uh)n

∆t
+ (u2h)n

x + g(hnhn+1)x = 0

Rearrange, eliminating (uh)n+1

hn+1−hn

∆t
−∆t(ghnhn+1

x )x =−Sn
x
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Stiffness

Delta form
• Preconditioner should work like the Newton step

−F(x) 7→ δx

• Recast semi-implicit method in delta form

δh
∆t

+ (δuh)x =−F0,
δuh
∆t

+ ghn(δh)x =−F1, Ĵ

( 1
∆t div

ghn∇
1

∆t

)
• Eliminate δuh

δh
∆t
−∆t(ghn(δh)x )x =−F0 + (∆tF1)x , S ∼ 1

∆t
−g∆t divhn

∇

• Solve for δh, then evaluate

δuh =−∆t
[
ghn(δh)x −F1

]
• Fully implicit solver

• Is nonlinearly consistent (no splitting error), can be high-order in time
• Leverages existing code when a semi-implicit method has been

implemented
• Allows efficient bifurcation analysis, steady-state analysis
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Stiffness

Stokes
Weak form of the Newton step
Find (u,p) such that∫

Ω
(Dv)T [

η1 + η
′Dw⊗Dw

]
Du

−p∇ · v−q∇ ·u =−v ·F(w) ∀(v ,q)

Matrix [
A(w) BT

B

](
u
p

)
=−

(
Fu(w)

0

)

Block factorization[
A BT

B

]
=

[
1

BA−1 1

][
A BT

S

]
=

[
A
B S

][
1 A−1BT

1

]
where the Schur complement is

S =−BA−1BT .
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Stiffness

Properties of the Schur complement

Block factorization[
A BT

B

]
=

[
1

BA−1 1

][
A BT

S

]
=

[
A
B S

][
1 A−1BT

1

]
where

S =−BA−1BT .

• S is symmetric negative definite if A is SPD and B has full rank (discrete
inf-sup condition)

• S is dense

• We only need to multiply B,BT with vectors.

• We need preconditioners for A and S.

• Any definite preconditioner can be used for A.

• It’s not obvious how to precondition S, more on that later.
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Stiffness

Preconitioning the Schur complement
• S =−BA−1BT is dense so we can’t form it, we need S−1.

Physics-based commutator: anisotropic pressure diffusion

vT A(w)u ∼
∫

(Dv)T [
η1 + η

′Dw⊗Dw
]
Du

• We would like to find an operator Ap such that

−S = BA−1BT ≈ BBT A−1
p =: PS

so that
P−1

S = Ap(BBT )−1

• Note
BBT ∼ (−∇·)∇ =−∆

corresponds to a Laplacian in the pressure space (multigrid).
• If η ′,∇η � 1 then Ap ∼−η∆ so P−1

S = η1
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Stiffness

Least squares commutator
• Schur complement

S =−BA−1BT

Suppose B is square and nonsingular. Then

S−1 =−B−T AB−1.

B is not square, replace B−1 with Moore-Penrose pseudoinverse

B† = BT (BBT )−1, (BT )† = (BBT )−1B.

Then
P−1

S =−(BBT )−1BABT (BBT )−1.

• Requires 2 Poisson preconditioners for (BBT )−1 per iteration
• Better with scaling, from mass matrices and effective viscosity (Elman et al.

2006, May & Moresi 2008)
• -pc_type fieldsplit -pc_fieldsplit_type schur
-fieldsplit_p_pc_type lsc -fieldsplit_p_lsc_pc_type
mg
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Stiffness

Unsteady Navier-Stokes
Strong form

J(w)

[
u
p

]
∼
{

ρ(αu + w ·∇u + u ·∇w)−η∇2u + ∇p =−F(w)
∇ ·u = 0

Matrix form[
A(w) BT

B

]
=

[
1

BA−1 1

][
A BT

S

]
S =−BA−1BT

Define A(w) in pressure space

• Want PS = (BBT )A−1
p ≈ BA−1BT , P−1

S = Ap(BBT )−1

• Ap ∼ ρ

(
αp + w ·∇p + p tr(∇w)

)
−η∇2p

• p tr(∇w) term is questionable, not needed for Picard

• Almost mesh-independent, weak Reynolds number dependence

(Silvester, Elman, Kay, Wathen. Efficient preconditioning of the linearized Navier-Stokes equations for

incompressible flow. 2001) (Elman et al. 2005-2010)
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Coupling

Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function

Evaluation
Postprocessing

Jacobian

Evaluation

Application

Initialization

Main Routine

PETSc
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Coupling

Overwhelmed with choices

• If you have a hard problem, no black-box solver will work well
• Everything in PETSc has a plugin architecture

• Put in the “special sauce” for your problem
• Your implementations are first-class

• PETSc exposes an algebra of composition at runtime
• Build a good solver from existing components, at runtime
• Multigrid, domain decomposition, factorization, relaxation, field-split
• Choose matrix format that works best with your preconditioner
• structural blocking, Neumann matrices, monolithic versus nested
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Coupling

Multi-physics coupling in PETSc

Velocity Pressure

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting
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Coupling

Multi-physics coupling in PETSc

Velocity PressureStokes

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 28 / 31



Coupling

Multi-physics coupling in PETSc

Velocity PressureStokes

Enthalpy Geometry

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting
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Coupling

Multi-physics coupling in PETSc

Velocity PressureStokes

Enthalpy Geometry

Ice

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting
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Coupling

Multi-physics coupling in PETSc

Velocity PressureStokes

Enthalpy Geometry

Ice

Boundary Layer

Ocean

• package each “physics”
independently

• solve single-physics and coupled
problems

• semi-implicit and fully implicit

• reuse residual and Jacobian
evaluation unmodified

• direct solvers and efficient
fieldsplit without recompilation

• use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

• matrix-free anywhere

• multiple levels of nesting
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Coupling

MatNest: a matrix format for field-split
AII AIΓ

αMΓΓ −NΓΓ

GII GΓI BII BIΓ CT
I DI

GIΓ GΓΓ BΓI BΓΓ CT
Γ DΓ

GIp GΓp CI CΓ

αEI αEΓ FI FΓ αMΘ + J




xI

xΓ

uI

uΓ

p
Θ


• pseudo-elasticity for mesh motion

• (ẋ−u) ·n = accumulution

• “just” geometry

• Stokes problem

• temperature dependence of rheology

• ALE and strain heating in heat transport

• thermal advection-diffusion

• Blocks stored
separately
no-copy access

• MatGetSubMatrix
API
looks same as “normal”
matrices

• Nesting can be
recursive

• Implements standard
linear algebra
operations
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Coupling

MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *B);

• Primarily for assembly
• B is not guaranteed to implement MatMult
• The communicator for B is not specified,

only safe to use non-collective ops (unless you check)

• IS represents an index set, includes a block size and communicator

• MatSetValuesBlockedLocal() is implemented

• MatNest returns nested submatrix, no-copy

• No-copy for Neumann-Neumann formats
(unassembled across procs, e.g. BDDC, FETI-DP)

• Most other matrices return a lightweight proxy Mat
• COMM_SELF
• Values not copied, does not implement MatMult
• Translates indices to the language of the parent matrix
• Multiple levels of nesting are flattened

Jed Brown (ETH Zürich) Tightly coupled solvers with loosely coupled software KAUST 2011-03-27 30 / 31



Coupling

Wrap-up

• Software modularity while retaining access to good solvers
• Reuse single-physics modules
• Unintrusive “special sauce” (once you figure it out)

• Choose the matrix format at runtime, best for your preconditioner
• monolithic, nested, Neumann
• scalar or block, symmetric

• Break into pieces that are “understood”, keep some block structure for
high throughput
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