A Software Framework in Python for Generating
Optimal Isogeometric Kernels on the PowerPC 450

Aron Ahmadia', Jed Brown?, Nathan Collier!, Tareq Malas!, John
Gunnels®

IKing Abdullah University of Science and Technology
2Argonne National Laboratory / ETH Zirich

31BM Watson

2011-07-13

Blue Gene/P

Blue Gene/P

U L
[

¥
Ell'llel-lnf.*-l

i

4 cores @ 850 Mhz

32 16-bytes FP
registers

1 packed FMA per
cycle, latency 5

0.5 load per cycle,
latency 4

3 memory requests
in-flight
write-through cache,
FIFO eviction policy

up to 5 memory
streams

What makes compiled code slow?

Compilers are bad at

v

SIMD instructions

v

Alignment constraints

v

Register allocation

v

Scheduling for out-of-order execution

v

Transformations to reduce memory bandwidth

But it’s not hopeless

» BG/P has rich SIMD instructions
> Large kernels reuse small kernels
» Register allocation usually has a pattern

Code generation
Mako templates writing inline assembly

» Easy to control unrolling and jamming

» Hard to manage generators with complex control flow
» Hard to keep track of register names and debug

» How to manage in-order execution?

» Smells bad

SimASM: All Python

» Name some or all registers, can mix pinned and unpinned
registers

v

Build kernel using generators/loops/objects/etc

v

Transform to partial order according to instruction dependencies
(hazards)

v

Transform/traverse using simulator, can debug correctness too

v

Hazards that cause stalls are shown and explained

Instruction Set

class fxcxma(Instruction):
def __init__(self,rt,ra,rc,rb):
Instruction.__init__(self)
self.save(locals(),’rt ra rc rb’)
self.reads(ra,rc,rb)
self .writes(rt)
self.uses(PPC.FP,5)
def run(self,c):
ra,rc,rb = c.access_fpregisters(self.ra,self.rc,self.rb)
c.fplc.get_fpregister(self.rt)] =
FPVal(ra.s*rc.s + rb.p,
ra.s*rc.p + rb.s)

Stencil Operation

A -
| Tegie N

J
Cartesian grid, constant coefficient scalar PDE.
Forward propagation operator or Jacobi smoother.
Memory bandwidth limited? (Datta et al. 2009, SIAM Review)

» Cache blocking: 26 Mstencil/s (41% of theoretical 63 at FPU peak)
Load/store and FPU limited?

» Jamming and SIMD: 93% in L1, 70% from DRAM

v

vy

v

Stencil Performance

60
50 -
o1 W/\/W
£
S
S 30F
0
=
—_— e T T
20 / 1
— 2x3
— 2x2
10 F — 1x3 |
— 1x2
— 1x1
00 50 100 150 200 250 300 350 400
Input length

(L2 prefetch cache associativity effects when streaming from DRAM)

Stencil implementation

do the FMA’s for frame 1/3
for i in self.block_ind:
istream += self.fma_block(com.w, com.streams,
com.results, i, self.KO)

mute for frame 2/3
istream += [
isa.lfsdux(com.streams[i],com.a_ptr,com.a_indexing[i])
for i in range(self.FRAME_SIZE)]

do the FMA’s for frame 2/3
for i in self.block_ind:
istream += self.fma_block(com.w, com.streams,
com.results, i, self.K1)

» Variable blocking and jamming, no need to worry about scheduling.
» Can build special-purpose vectorized primitives (fma_block)
» No need to worry about instruction dependencies.

Isogeometric finite elements

E"k-1 EJk & k+1 E, k+2

Partition mesh into elements (non-zero knot spans)

E-'k.1 &k ék E-'k+1 gk+1 ke

There are p+1 functions of order p assigned to an element K = [§k,§k+1]

0 1 23 4 s 0 1 2 3 4 5 ¢
I:
! N
Nj,l 22
K T R S R 3 1 T 3 4 s ¢
1"
Given knot numbers and order suffices to Ny

compute all relevant degree-of-freedom
interactions in 1D, 2D and 3D 0

IGA compared to standard FEM

» Can exactly conform to some engineering geometries.
» Better impedence match with solid modeling (CAD).

» Fewer degrees of freedom for 4th order problems,
e.g. no rotation dofs for shells.

» More nonzeros per row as continuity is increased.
» More quadrature points per dof (higher arithmetic intensity).

» Needs logically structured grids
(T-splines can join structured patches)

» All-positive basis functions useful for some problems
(maintain positivity, robust conservative normals)

» Non-interpolatary basis can be tricky for preconditioning.

Main Routine

Timestepping Solvers (TS)
Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Preconditioners (PC)

Function Jacobian
Evaluation

IGA used to evaluate nonlinear residuals

v

v

PETSc DA used to manage parallelism.
Adaptive time integration using method of lines.
» Generalized o method from PETSc TS.

v

v

Matrix-free Newton-Krylov, need only residuals for implicit solve.

Navier-Stokes Korteweg

Phase field model for water/water vapor two-phase flows. Find U = (p, u)
such that B(W,U) = 0 for all W = (g, w), plus boundary conditions.

d d d
B(W,U) =/Qqa—lt)—Vq-pu—|—w- [ua—l:+pa—ﬂ
+Vw: [—pu®u+r—(p+7t|Vp|2)1]

—V(V-w)-ApVp —V(Vp-w)-AVp =0
Ix| density

000

000

[X] velocity-u

000 X/ velocity-v

Navier-Stokes Korteweg
Phase field model for water/water vapor two-phase flows. Find U = (p,u)
such that B(W,U) = 0 for all W = (¢, w), plus boundary conditions.

ap du
B(W,U) = /q——Vq pu+w- {uat —l—pat]

+ Vi [—pu®u+r—(p+/x|Vp|))1}
—V(V-w)-ApVp —V(Vp-w)-AVp =0

for each Na,Na_x,Na_xx,Na_y,Na_yy: // test functions

R_rho

= Na*rho_t;

R_rho += -rho*(Na_x*ux + Na_y*uy);

R_ux
R_ux
R_ux
R_ux
R_ux
R_ux

Na*ux*rho_t;

Na*rho*ux_t;

-rho* (Na_x*ux*ux + Na_y*ux*uy) ;
-Na_x*p;

rRe* (Na_x*tau_xx + Na_y*tau_xy);
-Ca2+rho* (Na_xx*rho_x + Na_xy*rho_y);

Transform to more vector-friendly form

» Pre-compute “physics” W at each quadrature point
» assembling the residual becomes dot products
for each Na,Na_x,Na_xx,Na_y,Na_yy:

R_rho = NaxW[irho_t];
R_rho += Na_x*W[rho_nax];
R_rho += Na_y*W[rho_nay];
R_ux = Na*W[ux_na];

R_ux += Na_x*W[ux_nax];
R_ux += Na_y*W[ux_nay];
R_ux += Na_xx*W[u_naxx];
R_ux += Na_xy*W[u_naxy];

> 1.9x speedup

Vectorize using SImASM

» Define context-sensitive vector primitives
def muladd_copy(self, com, rt, ra, rb):
if ral[1] == 0:
return isa.fxcpmadd(rt,com.W[ra[0]],rb,rt)
else:
return isa.fxcsmadd(rt,com.W[ral[0]],rb,rt)

» Unrolled/jammed vector assembly looks “close” to the physics
[self .muladd_copy(com, ’R_rho’, com.rho_nax, ’Na_x’),
self .muladd_copy(com, ’R_ux’, com.ux_nax, ’Na_x’),
self .muladd_copy(com, ’R_uy’, com.uy_nax, ’Na_x’)]

» Still limited by load/store unit.

» Multiple quadrature points and elements could amortize

load/store cost.

» More clever transformations?

» Still need to optimize computation of coordinate transformation
for high end-to-end throughput.

Perspective on SImASM
Blue Gene/P is representative of future architectures

» In-order execution

» Longer FP registers

» More cores

» Less memory bandwidth

Need some way to get close to peak performance

» SSE intrinsics are pretty good on Intel/AMD

» Better designed intrinsic API

» Out of order execution more tolerant

» Fewer registers

» Lightweight templating (e.g. Mako) might be good enough
» Interesting alternatives

» OpenCL (wide vectorization, different memory model)
> Intel SPMD Program Compiler (ispc.github.com)

ispc.github.com

Outlook

Lots more to do with IGA/FEM

» Library interface for vectorized physics/assembly
» Connecting structured blocks (T-splines)
» Algorithmic (analytic Jacobians, preconditioning)

SimASM

> Better optimization framework.
Different target architectures (e.g. Blue Gene/Q, Knight's Corner).

v

v

Interface improvements/visualization.

v

Code generation from high level/symbolic description?

v

bitbucket.org/jedbrown/simasm

bitbucket.org/jedbrown/simasm

