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The Roadmap

Hardware trends

I More cores (keep hearing O(1000) per node)

I Long vector registers (already 32 bytes for AVX and BG/Q)

I Must use SMT to hide memory latency

I Must use SMT for floating point performance (GPU, BG/Q)

I Large penalty for non-contiguous memory access

“Free flops”, but how can we use them?

I High order methods good: better accuracy per storage

I High order methods bad: work unit gets larger

I GPU threads have very little memory, must keep work unit small

I Need library composability, keep user contribution
embarrassingly parallel



How to program this beast?

I Decouple physics from discretization
I Expose small, embarrassingly parallel operations to user
I Library schedules user threads for reuse between kernels
I User provides physics in kernels run at each quadrature point
I Continuous weak form: find u ∈ VD

vTF(u)∼
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

I Similar form at faces, but may involve Riemann solve
I Library manages reductions

I Interpolation and differentiation on elements
I Exploit tensor product structure to keep working set small
I Assembly into solution/residual vector (sum over elements)



Nodal hp-version finite element methods

1D reference element

I Lagrange interpolants on
Legendre-Gauss-Lobatto points

I Quadrature R̂, weights Ŵ
I Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ⊗ Ŵ⊗ Ŵ

B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂

D̂1 = B̂⊗ D̂⊗ B̂

D̂2 = B̂⊗ B̂⊗ D̂

These tensor product operations
are very efficient, 70% of peak flop/s
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Operations on physical elements

Mapping to physical space

xe : K̂→ Ke, Je
ij = ∂xe

i /∂ x̂j, (Je)−1 = ∂ x̂/∂xe

Element operations in physical space
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Representation of Jacobians, Automation
I For unassembled representations, decomposition, and assembly
I Continuous weak form: find u

vTF(u)∼
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

I Weak form of the Jacobian J(u): find w

vTJ(u)w∼
∫
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I Terms in [fi,j] easy to compute symbolically, AD more scalable.
I Nonlinear terms f0, f1 usually have the most expensive nonlinearities

in the computation of scalar material parameters
I Equations of state, effective viscosity, “star” region in Riemann solve
I Compute gradient with reverse-mode, store at quadrature points.
I Perturb scalars, then use forward-mode to complete the Jacobian.
I Flip for action of the adjoint.



Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu, pressure p, and total energy density E:

(ρu)t +∇·(ρu⊗u−ηDui +p1)−ρg = 0

ρt +∇·ρu = 0

Et +∇·
(
(E+p)u− kT∇T− kω∇ω

)
−ηDui :Dui−ρu ·g = 0

I Solve for density ρ , ice velocity ui, temperature T , and melt
fraction ω using constitutive relations.

I Simplified constitutive relations can be solved explicitly.
I Temperature, moisture, and strain-rate dependent rheology η .
I High order FEM, typically Q3 momentum & energy, SUPG (yuck).

I DAEs solved implicitly after semidiscretizing in space.

I Preconditioning using nested fieldsplit



Traversal code
I CPU traversal computes coefficients of test functions,

https://github.com/jedbrown/dohp/
while (IteratorHasPatch(iter)) {

IteratorGetPatchApplied(iter,&Q,&jw,
&x,&dx,NULL,NULL,
&u,&du,&u_,&du_, &p,&dp,&p_,NULL, &e,&de,&e_,&de_);

IteratorGetStash(iter,NULL,&stash);
for (dInt i=0; i<Q; i++) {

PointwiseFunction(context,x[i],dx[i],jw[i],
u[i],du[i],p[i],dp[i],e[i],de[i],
&stash[i], u_[i],du_[i],p_[i],e_[i],de_[i]);

}
IteratorCommitPatchApplied(iter,INSERT_VALUES, NULL,NULL,

u_,du_, p_,NULL, e_,de_);
IteratorNextPatch(iter);

}
I GPU version calls PointwiseFunction() directly.
I Unassembled Jacobian application reuses stash

PointwiseJacobian(context,&stash[i],dx[i],jw[i],
u[i],du[i],p[i],dp[i],e[i],de[i],
u_[i],du_[i],p_[i],e_[i],de_[i]);

https://github.com/jedbrown/dohp/






Performance of assembled versus unassembled
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I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



Memory Bandwidth

Operation Arithmetic Intensity (flop/s per byte)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/s/B)

Sandy Bridge 6-core 21* 150 7.2
Magny Cours 16-core 42* 281 6.7
Blue Gene/Q node 43 205 4.8
GeForce 9400M 21 54 2.6
GTX 285 159 1062 6.8
Tesla M2050 144 1030 7.1



Outlook

I Sparse matrix assembly (for preconditioning) not shown
I > 100 GF/s for lowest order Stokes (Matt Knepley)
I common physics code with CPU implementation
I Dohp CPU version faster than libMesh and Deal.II for Q1
I Q1 assembly embedded in higher order is 8% slower than

hand-rolled

I Can’t wait for OpenCL to implement indirect function calls

I Symbolic differentiation too slow, tired of hand-differentiation

I I want source-transformation AD with indirect function calls

I Find correct amount of reuse between face and cell integration

I Riemann solves harder to vectorize

I Finer grained parallelism in GPU tensor product kernels
I Hide dispatch to pointwise kernels inside library

I Easy, but scary. Library/framework becomes Framework.


