Toward less synchronous composable multilevel methods for implicit multiphysics simulation

Jed Brown¹, Mark Adams², Peter Brune¹, Matt Knepley³, Barry Smith¹

¹Mathematics and Computer Science Division, Argonne National Laboratory ²Columbia University ³Computation Institute, University of Chicago

2012-01-10

Outline

Multiphysics and methods

Coupling software in PETSc

Hardware and consequences

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

Multiphysics problems

Examples

- Saddle-point problems (e.g. incompressibility, contact)
- Stiff waves (e.g. low-Mach combustion)
- Mixed type (e.g. radiation hydrodynamics, ALE free-surface flows)
- Multi-domain problems (e.g. fluid-structure interaction)
- Full space PDE-constrained optimization

Software/algorithmic considerations

- Separate groups develop different "physics" components
- Do not know a priori which methods will have good algorithmic properties
- Achieving high throughput is more complicated
- Multiple time and/or spatial scales
 - Splitting methods are delicate, often not in asymptotic regime
 - ► Strongest nonlinearities usually non-stiff: prefer explicit for TVD limiters/shocks

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves

- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

► Relaxation: -pc_fieldsplit_type [additive,multiplicative,symmetric_multiplicative] $\begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{pmatrix}^{-1} \begin{pmatrix} A \\$

Gauss-Seidel inspired, works when fields are loosely coupled
 Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} A & B \\ & S \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators

Outline

Multiphysics and methods

Coupling software in PETSc

Hardware and consequences

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

MomentumStokes Pressure

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

Boundary Layer

Ocean

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

Work in Split Local space, matrix data structures reside in any space.

MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *B);

- Primarily for assembly
 - B is not guaranteed to implement MatMult
 - The communicator for B is not specified, only safe to use non-collective ops (unless you check)
- IS represents an index set, includes a block size and communicator
- MatSetValuesBlockedLocal() is implemented
- MatNest returns nested submatrix, no-copy
- No-copy for Neumann-Neumann formats (unassembled across procs, e.g. BDDC, FETI-DP)
- Most other matrices return a lightweight proxy Mat
 - COMM_SELF
 - Values not copied, does not implement MatMult
 - Translates indices to the language of the parent matrix

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Multiple levels of nesting are flattened

Stokes + Implicit Free Surface

$$\begin{bmatrix} \eta D_{ij}(\boldsymbol{u}) \end{bmatrix}_{,j} - p_{,i} = f_i$$
$$u_{k,k} = 0$$
$$\hat{x}_i = \hat{x}_i^{t-\Delta t} + \Delta t \, u_i(\hat{x}_i)$$

COORDINATE RESIDUALS

$$F_x := -u_i + \frac{\hat{x}_i}{\Delta t} - \frac{\hat{x}_i^{t-\Delta}}{\Delta t}$$

[We use a full Lagrangian update of our mesh, with no remeshing]

 $\begin{aligned} J_{ACOBIAN} \\ \mathcal{J}_{si} &= \begin{bmatrix} A + \delta_{\hat{x}}A & B + \delta_{\hat{x}}B \\ B^T + \delta_{\hat{x}}B^T & 0 \\ -I & 0 & \frac{I}{\Delta t} \end{bmatrix} \xrightarrow{\text{Reuse stokes operators and saddle point preconditioners}} \\ \text{NESTED PRECONDITIONER} \\ \mathcal{P}_{si} &= \begin{bmatrix} \begin{bmatrix} \mathcal{P}_s^l \\ I \end{bmatrix} \begin{bmatrix} -\frac{I}{\Delta t} \end{bmatrix} \xrightarrow{P_s^l} \mathcal{P}_s^l = \begin{bmatrix} A & 0 \\ B^T & -S \end{bmatrix} \end{aligned}$

May, Le Pourhiet & Brown: Coupled Geodynamics

16

"Drunken seaman", Rayleigh Taylor instability test case from Kaus et al., 2010. Dense, viscous material (yellow) overlying less dense, less viscous material (blue).

Outline

Multiphysics and methods

Coupling software in PETSc

Hardware and consequences

<□> <圖> < E> < E> E のQ@

On-node hardware roadmap

Hardware trends

- More cores (keep hearing $\mathcal{O}(1000)$ per node)
- Long vector registers (32B for AVX and BG/Q, 64B for MIC)
- Must use SMT to hide memory latency
- Must use SMT for floating point performance (GPU, BG/Q)
- Large penalty for non-contiguous memory access

"Free flops", but how can we use them?

- High order methods good: better accuracy per storage
- High order methods bad: work unit gets larger
- GPU threads have very little memory, must keep work unit small
- Need library composability, keep user contribution embarrassingly parallel

How to program this beast?

- Decouple physics from discretization
 - Expose small, embarrassingly parallel operations to user
 - Library schedules user threads for reuse between kernels
 - User provides physics in kernels run at each quadrature point
 - Continuous weak form: find $u \in \mathscr{V}_D$

$$v^T F(u) \sim \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) = 0, \quad \forall v \in \mathscr{V}_0$$

- Similar form at faces, but may involve Riemann solve
- Library manages reductions
 - Interpolation and differentiation on elements
 - Exploit tensor product structure to keep working set small
 - Assembly into solution/residual vector (sum over elements)

Nodal hp-version finite element methods

1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature \hat{R} , weights \hat{W}
- Evaluation: \hat{B}, \hat{D}

3D reference element

$$\begin{array}{ll} \hat{W} = \hat{W} \otimes \hat{W} \otimes \hat{W} & \hat{D}_0 = \hat{D} \otimes \hat{B} \otimes \hat{B} \\ \hat{B} = \hat{B} \otimes \hat{B} \otimes \hat{B} & \hat{D}_1 = \hat{B} \otimes \hat{D} \otimes \hat{B} \\ \hat{D}_2 = \hat{B} \otimes \hat{B} \otimes \hat{D} \end{array}$$

These tensor product operations are very efficient, 70% of peak flop/s

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Nodal hp-version finite element methods

1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature \hat{R} , weights \hat{W}
- Evaluation: \hat{B}, \hat{D}

3D reference element

These tensor product operations are very efficient, 70% of peak flop/s

Operations on physical elements

Mapping to physical space

$$x^e: \hat{K} \to K^e, \quad J^e_{ij} = \partial x^e_i / \partial \hat{x}_j, \quad (J^e)^{-1} = \partial \hat{x} / \partial x^e$$

Element operations in physical space

$$B^{e} = \hat{B} \qquad W^{e} = \hat{W}\Lambda(|J^{e}(r)|)$$
$$D_{i}^{e} = \Lambda\left(\frac{\partial \hat{x}_{0}}{\partial x_{i}}\right)\hat{D}_{0} + \Lambda\left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right)\hat{D}_{1} + \Lambda\left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right)\hat{D}_{2}$$
$$(D_{i}^{e})^{T} = \hat{D}_{0}^{T}\Lambda\left(\frac{\partial \hat{x}_{0}}{\partial x_{i}}\right) + \hat{D}_{1}^{T}\Lambda\left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right) + \hat{D}_{2}^{T}\Lambda\left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right)$$

Global problem is defined by assembly

$$F(u) = \sum_{e} \mathscr{E}_{e}^{T} \left[(B^{e})^{T} W^{e} \Lambda(f_{0}(u^{e}, \nabla u^{e})) + \sum_{i=0}^{d} (D_{i}^{e})^{T} W^{e} \Lambda(f_{1,i}(u^{e}, \nabla u^{e})) \right] = 0$$

where $u^e = B^e \mathscr{E}^e u$ and $\nabla u^e = \{D^e_i \mathscr{E}^e u\}_{i=0}^2$

Representation of Jacobians, Automation

- For unassembled representations, decomposition, and assembly
- Continuous weak form: find u

$$v^T F(u) \sim \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) = 0, \quad \forall v \in \mathscr{V}_0$$

Weak form of the Jacobian J(u): find w

$${}^{T}J(u)w \sim \int_{\Omega} \begin{bmatrix} v^{T} & \nabla v^{T} \end{bmatrix} \begin{bmatrix} f_{0,0} & f_{0,1} \\ f_{1,0} & f_{1,1} \end{bmatrix} \begin{bmatrix} w \\ \nabla w \end{bmatrix}$$
$$[f_{i,j}] = \begin{bmatrix} \frac{\partial f_{0}}{\partial u} & \frac{\partial f_{0}}{\partial \nabla u} \\ \frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial \nabla u} \end{bmatrix} (u, \nabla u)$$

- Terms in $[f_{i,j}]$ easy to compute symbolically, AD more scalable.
- ► Nonlinear terms *f*₀,*f*₁ usually have the most expensive nonlinearities in the computation of scalar material parameters
 - Equations of state, effective viscosity, "star" region in Riemann solve
 - Compute gradient with reverse-mode, store at quadrature points.
 - Perturb scalars, then use forward-mode to complete the Jacobian.
 - Flip for action of the adjoint.

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu , pressure p, and total energy density E:

$$(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta D u_i + p 1) - \rho g = 0$$

$$\rho_t + \nabla \cdot \rho u = 0$$

$$E_t + \nabla \cdot ((E+p)u - k_T \nabla T - k_\omega \nabla \omega) - \eta D u_i : D u_i - \rho u \cdot g = 0$$

- Solve for density ρ, ice velocity u_i, temperature T, and melt fraction ω using constitutive relations.
 - Simplified constitutive relations can be solved explicitly.
 - Temperature, moisture, and strain-rate dependent rheology η.

- High order FEM, typically Q₃ momentum & energy
- DAEs solved implicitly after semidiscretizing in space.
- Preconditioning using nested fieldsplit

Relative effect of the blocks

$$J = \begin{pmatrix} J_{uu} & J_{up} & J_{uE} \\ J_{pu} & 0 & 0 \\ J_{Eu} & J_{Ep} & J_{EE} \end{pmatrix}.$$

- *J_{uu}* Viscous/momentum terms, nearly symmetric, variable coefficients, anisotropy from Newton.
- J_{up} Weak pressure gradient, viscosity dependence on pressure (small), gravitational contribution (pressure-induced density variation). Large, nearly balanced by gravitational forcing.
- J_{uE} Viscous dependence on energy, very nonlinear, not very large.
- J_{pu} Divergence (mass conservation), nearly equal to J_{up}^{T} .
- J_{Eu} Sensitivity of energy on momentum, mostly advective transport. Large in boundary layers with large thermal/moisture gradients.
- J_{Ep} Thermal/moisture diffusion due to pressure-melting, $u \cdot \nabla$.
- *J_{EE}* Advection-diffusion for energy, very nonlinear at small regularization. Advection-dominated except in boundary layers and stagnant ice, often balanced in vertical.

How much nesting?

$$P_{1} = \begin{pmatrix} J_{uu} & J_{up} & J_{uE} \\ 0 & B_{pp} & 0 \\ 0 & 0 & J_{EE} \end{pmatrix}$$

- *B_{pp}* is a mass matrix in the pressure space weighted by inverse of kinematic viscosity.
- Elman, Mihajlović, Wathen, JCP 2011 for non-dimensional isoviscous Boussinesq.
- Works well for non-dimensional problems on the cube, not for realistic parameters.

$$P = \begin{bmatrix} \begin{pmatrix} J_{uu} & J_{up} \\ J_{pu} & 0 \end{pmatrix} & \\ \begin{pmatrix} J_{Eu} & J_{Ep} \end{pmatrix} & J_{EE} \end{bmatrix}$$

- Inexact inner solve using upper-triangular with B_{pp} for Schur.
- Another level of nesting.
- GCR tolerant of inexact inner solves.
- Outer converges in 1 or 2 iterations.
- Low-order preconditioning full-accuracy unassembled high order operator.
- Build these on command line with PETSc PCFieldSplit.

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%</p>

Memory Bandwidth

Operation		Arithmetic Intensity (flops per byte)	
Sparse matrix-vector product Dense matrix-vector product Unassembled matrix-vector product High-order residual evaluation		1/6 1/4 ≈ 8 > 5	
Processor	BW (GB/s)	Peak (GF/s)	Balanced AI (F/B)
Sandy Bridge 6-core Magny Cours 16-core Blue Gene/Q node GeForce 9400M	21* 42* 43 21	150 281 205 54 1062	7.2 6.7 4.8 2.6 6.8
Tesla M2050	144	1030	7.1

Prospects for reducing synchronization

- Dot products and norms
 - orthogonality is a powerful concept
 - dot product/norm fusion in CG variants
 - Iatency-tolerant Krylov methods, TSQR for GMRES
 - nonlinear methods (e.g. NGMRES, BFGS, line searches)
 - hierarchical methods to limit system-wide norms
 - setting up smoothers and coarsening rates for AMG
- additive coarse grids
- subphysics on subcommunicators, even within multigrid context
- s-step methods (and other fusion)
 - usually spoiled by algorithmic requirements of preconditioning

- relevant for multigrid smoothers
- difficult crossovers for 3D problems

S-step methods in 3D

▲□▶▲圖▶▲圖▶▲圖▶ 圖 のQ@

Multigrid is always strong scaling

- Finest level is chosen by the application (might have big subdomains)
- All coarsened levels choose communicator size based on strong scaling limit
- Optimizing the strong scaling limit pays off consistently
- Rapid coarsening is important (2:1 semi-coarsening not okay any more)

Software challenges

- Which interfaces do users have to interact with?
 - "F"ramework vs library
 - Extensibility is critical for multiphysics
- Asynchronous interfaces crossing module boundaries
 - How to ensure progress?
- Merge communication on multiple levels or between multiple physics
- Fusing coarse level operations
- Working with non-nested communicators is tricky
- Current solutions for hierarchical memory are bad for libraries
 - I want a communicator-like object
 - I want a way to allocate memory explicitly/relative to algorithmic dependencies instead of implicit "first touch"

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Time integration: IMEX, multirate, parallel in time