
Toward less synchronous composable multilevel
methods for implicit multiphysics simulation

Jed Brown1, Mark Adams2, Peter Brune1, Matt Knepley3, Barry
Smith1

1Mathematics and Computer Science Division, Argonne National Laboratory
2Columbia University

3Computation Institute, University of Chicago

2012-01-10

Outline

Multiphysics and methods

Coupling software in PETSc

Hardware and consequences

Multiphysics problems
Examples

I Saddle-point problems (e.g. incompressibility, contact)

I Stiff waves (e.g. low-Mach combustion)

I Mixed type (e.g. radiation hydrodynamics, ALE free-surface flows)

I Multi-domain problems (e.g. fluid-structure interaction)

I Full space PDE-constrained optimization

Software/algorithmic considerations

I Separate groups develop different “physics” components

I Do not know a priori which methods will have good algorithmic
properties

I Achieving high throughput is more complicated
I Multiple time and/or spatial scales

I Splitting methods are delicate, often not in asymptotic regime
I Strongest nonlinearities usually non-stiff: prefer explicit for TVD

limiters/shocks

The Great Solver Schism: Monolithic or Split?

Monolithic

I Direct solvers

I Coupled Schwarz

I Coupled Neumann-Neumann
(need unassembled matrices)

I Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

I Physics-split Schwarz
(based on relaxation)

I Physics-split Schur
(based on factorization)

I approximate commutators
SIMPLE, PCD, LSC

I segregated smoothers
I Augmented Lagrangian
I “parabolization” for stiff

waves

X Need to understand global
coupling strengths

I Preferred data structures depend on which method is used.

I Interplay with geometric multigrid.

Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
I Relaxation: -pc_fieldsplit_type

[additive,multiplicative,symmetric_multiplicative][
A

D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

I Gauss-Seidel inspired, works when fields are loosely coupled
I Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[1
CA−1 1

]−1

, S = D−CA−1B

I robust (exact factorization), can often drop lower block
I how to precondition S which is usually dense?

I interpret as differential operators, use approximate commutators

Outline

Multiphysics and methods

Coupling software in PETSc

Hardware and consequences

Multi-physics coupling in PETSc

Momentum Pressure

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Work in Split Local space, matrix data structures reside in any space.

MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *B);
I Primarily for assembly

I B is not guaranteed to implement MatMult
I The communicator for B is not specified,

only safe to use non-collective ops (unless you check)

I IS represents an index set, includes a block size and
communicator

I MatSetValuesBlockedLocal() is implemented

I MatNest returns nested submatrix, no-copy

I No-copy for Neumann-Neumann formats
(unassembled across procs, e.g. BDDC, FETI-DP)

I Most other matrices return a lightweight proxy Mat
I COMM_SELF
I Values not copied, does not implement MatMult
I Translates indices to the language of the parent matrix
I Multiple levels of nesting are flattened

Text
May, Le Pourhiet & Brown: Coupled Geodynamics

Stokes + Implicit Free Surface

16

“Drunken seaman”, Rayleigh
Taylor instability test case from
Kaus et al., 2010. Dense, viscous
material (yellow) overlying less
dense, less viscous material
(blue).

Momentum

Pressure“S
to

ke
s”

Coordinates

COORDINATE RESIDUALS

JACOBIAN

NESTED PRECONDITIONER

Reuse stokes
operators and
saddle point

preconditioners

[We use a full Lagrangian update of our mesh, with no remeshing]

16Sunday, December 4, 2011

Outline

Multiphysics and methods

Coupling software in PETSc

Hardware and consequences

On-node hardware roadmap

Hardware trends

I More cores (keep hearing O(1000) per node)

I Long vector registers (32B for AVX and BG/Q, 64B for MIC)

I Must use SMT to hide memory latency

I Must use SMT for floating point performance (GPU, BG/Q)

I Large penalty for non-contiguous memory access

“Free flops”, but how can we use them?

I High order methods good: better accuracy per storage

I High order methods bad: work unit gets larger

I GPU threads have very little memory, must keep work unit small

I Need library composability, keep user contribution
embarrassingly parallel

How to program this beast?

I Decouple physics from discretization
I Expose small, embarrassingly parallel operations to user
I Library schedules user threads for reuse between kernels
I User provides physics in kernels run at each quadrature point
I Continuous weak form: find u ∈ VD

vTF(u)∼
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

I Similar form at faces, but may involve Riemann solve
I Library manages reductions

I Interpolation and differentiation on elements
I Exploit tensor product structure to keep working set small
I Assembly into solution/residual vector (sum over elements)

Nodal hp-version finite element methods

1D reference element

I Lagrange interpolants on
Legendre-Gauss-Lobatto points

I Quadrature R̂, weights Ŵ
I Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ⊗ Ŵ⊗ Ŵ

B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂

D̂1 = B̂⊗ D̂⊗ B̂

D̂2 = B̂⊗ B̂⊗ D̂

These tensor product operations
are very efficient, 70% of peak flop/s

Nodal hp-version finite element methods

1D reference element

I Lagrange interpolants on
Legendre-Gauss-Lobatto points

I Quadrature R̂, weights Ŵ
I Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ⊗ Ŵ⊗ Ŵ

B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂

D̂1 = B̂⊗ D̂⊗ B̂

D̂2 = B̂⊗ B̂⊗ D̂

These tensor product operations
are very efficient, 70% of peak flop/s

Operations on physical elements

Mapping to physical space

xe : K̂→ Ke, Je
ij = ∂xe

i /∂ x̂j, (Je)−1 = ∂ x̂/∂xe

Element operations in physical space

Be = B̂ We = ŴΛ(|Je(r)|)

De
i = Λ

(
∂ x̂0

∂xi

)
D̂0 +Λ

(
∂ x̂1

∂xi

)
D̂1 +Λ

(
∂ x̂2

∂xi

)
D̂2

(De
i)

T = D̂T
0 Λ

(
∂ x̂0

∂xi

)
+ D̂T

1 Λ

(
∂ x̂1

∂xi

)
+ D̂T

2 Λ

(
∂ x̂2

∂xi

)
Global problem is defined by assembly

F(u)=∑
e

E T
e

[
(Be)TWe

Λ(f0(ue,∇ue))+
d

∑
i=0

(De
i)

TWe
Λ(f1,i(ue,∇ue))

]
= 0

where ue = BeE eu and ∇ue = {De
i E

eu}2
i=0

Representation of Jacobians, Automation
I For unassembled representations, decomposition, and assembly
I Continuous weak form: find u

vTF(u)∼
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

I Weak form of the Jacobian J(u): find w

vTJ(u)w∼
∫

Ω

[
vT ∇vT

][f0,0 f0,1
f1,0 f1,1

][
w

∇w

]

[fi,j] =

∂ f0
∂u

∂ f0
∂∇u

∂ f1
∂u

∂ f1
∂∇u

(u,∇u)

I Terms in [fi,j] easy to compute symbolically, AD more scalable.
I Nonlinear terms f0, f1 usually have the most expensive nonlinearities

in the computation of scalar material parameters
I Equations of state, effective viscosity, “star” region in Riemann solve
I Compute gradient with reverse-mode, store at quadrature points.
I Perturb scalars, then use forward-mode to complete the Jacobian.
I Flip for action of the adjoint.

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu, pressure p, and total energy density E:

(ρu)t +∇·(ρu⊗u−ηDui +p1)−ρg = 0

ρt +∇·ρu = 0

Et +∇·
(
(E+p)u− kT∇T− kω∇ω

)
−ηDui :Dui−ρu ·g = 0

I Solve for density ρ , ice velocity ui, temperature T , and melt
fraction ω using constitutive relations.

I Simplified constitutive relations can be solved explicitly.
I Temperature, moisture, and strain-rate dependent rheology η .
I High order FEM, typically Q3 momentum & energy

I DAEs solved implicitly after semidiscretizing in space.

I Preconditioning using nested fieldsplit

Relative effect of the blocks

J =

Juu Jup JuE

Jpu 0 0
JEu JEp JEE

 .

Juu Viscous/momentum terms, nearly symmetric, variable
coefficionts, anisotropy from Newton.

Jup Weak pressure gradient, viscosity dependence on pressure
(small), gravitational contribution (pressure-induced density
variation). Large, nearly balanced by gravitational forcing.

JuE Viscous dependence on energy, very nonlinear, not very large.
Jpu Divergence (mass conservation), nearly equal to JT

up.
JEu Sensitivity of energy on momentum, mostly advective transport.

Large in boundary layers with large thermal/moisture gradients.
JEp Thermal/moisture diffusion due to pressure-melting, u ·∇.
JEE Advection-diffusion for energy, very nonlinear at small

regularization. Advection-dominated except in boundary layers
and stagnant ice, often balanced in vertical.

How much nesting?

P1 =

Juu Jup JuE

0 Bpp 0
0 0 JEE

I Bpp is a mass matrix in the

pressure space weighted by
inverse of kinematic viscosity.

I Elman, Mihajlović, Wathen,
JCP 2011 for non-dimensional
isoviscous Boussinesq.

I Works well for
non-dimensional problems on
the cube, not for realistic
parameters.

P =

(Juu Jup

Jpu 0

)
(
JEu JEp

)
JEE

I Inexact inner solve using

upper-triangular with Bpp for
Schur.

I Another level of nesting.

I GCR tolerant of inexact inner
solves.

I Outer converges in 1 or 2
iterations.

I Low-order preconditioning full-accuracy unassembled high order
operator.

I Build these on command line with PETSc PCFieldSplit.

Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%

Memory Bandwidth

Operation Arithmetic Intensity (flops per byte)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)

Sandy Bridge 6-core 21* 150 7.2
Magny Cours 16-core 42* 281 6.7
Blue Gene/Q node 43 205 4.8
GeForce 9400M 21 54 2.6
GTX 285 159 1062 6.8
Tesla M2050 144 1030 7.1

Prospects for reducing synchronization

I Dot products and norms
I orthogonality is a powerful concept
I dot product/norm fusion in CG variants
I latency-tolerant Krylov methods, TSQR for GMRES
I nonlinear methods (e.g. NGMRES, BFGS, line searches)
I hierarchical methods to limit system-wide norms
I setting up smoothers and coarsening rates for AMG

I additive coarse grids

I subphysics on subcommunicators, even within multigrid context
I s-step methods (and other fusion)

I usually spoiled by algorithmic requirements of preconditioning
I relevant for multigrid smoothers
I difficult crossovers for 3D problems

S-step methods in 3D

102 103 104 105
102

103

104

105

106
work

102 103 104 105
102

103

104

105

106
memory

p = 1, s = 1

p = 2, s = 1

p = 2, s = 3

p = 2, s = 5

102 103 104 105
102

103

104

105

106
communication

Multigrid is always strong scaling

I Finest level is chosen by the application (might have big
subdomains)

I All coarsened levels choose communicator size based on strong
scaling limit

I Optimizing the strong scaling limit pays off consistently

I Rapid coarsening is important (2:1 semi-coarsening not okay any
more)

Software challenges

I Which interfaces do users have to interact with?
I “F”ramework vs library
I Extensibility is critical for multiphysics

I Asynchronous interfaces crossing module boundaries
I How to ensure progress?

I Merge communication on multiple levels or between multiple
physics

I Fusing coarse level operations

I Working with non-nested communicators is tricky
I Current solutions for hierarchical memory are bad for libraries

I I want a communicator-like object
I I want a way to allocate memory explicitly/relative to algorithmic

dependencies instead of implicit “first touch”

I Time integration: IMEX, multirate, parallel in time

	Multiphysics and methods
	Coupling software in PETSc
	Hardware and consequences

