Utilizing Multicore and GPU Hardware for Multiphysics Simulation through Implicit High-order Finite Element Methods with Tensor Product **Structure**

Jed Brown 1 , Aron Ahmadia 2 , Matt Knepley 3 , Barry Smith 1

¹ Mathematics and Computer Science Division, Argonne National Laboratory 2 King Abdullah University of Science and Technology $3\overline{C}$ Computation Institute, University of Chicago

2012-02-15

The Roadmap

Hardware trends

- \blacktriangleright More cores (keep hearing $\mathcal{O}(1000)$ per node)
- \triangleright Long vector registers (already 32 bytes for AVX and BG/Q)
- \triangleright Must use SMT to hide memory latency
- \triangleright Must use SMT for floating point performance (GPU, BG/Q)
- \blacktriangleright Large penalty for non-contiguous memory access

"Free flops", but how can we use them?

- \blacktriangleright High order methods good: better accuracy per storage
- \blacktriangleright High order methods bad: work unit gets larger
- \triangleright GPU threads have very little memory, must keep work unit small

KORKARYKERKE POLO

 \blacktriangleright Need library composability, keep user contribution embarrassingly parallel

How to program this beast?

- Decouple physics from discretization
	- \blacktriangleright Expose small, embarrassingly parallel operations to user
	- \blacktriangleright Library schedules user threads for reuse between kernels
	- \triangleright User provides physics in kernels run at each quadrature point
	- \triangleright Continuous weak form: find *u* ∈ \mathscr{V}_D

$$
v^T F(u) \sim \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v \cdot f_1(u, \nabla u) = 0, \qquad \forall v \in \mathscr{V}_0
$$

- \triangleright Similar form at faces, but may involve Riemann solve
- \blacktriangleright Library manages reductions
	- \blacktriangleright Interpolation and differentiation on elements
	- Interaction with neighbors (limiting, edge stabilization)
	- \blacktriangleright Exploit tensor product structure to keep working set small
	- \triangleright Assembly into solution/residual vector (sum over elements)

Nodal *hp*-version finite element methods

1D reference element

- \blacktriangleright Lagrange interpolants on Legendre-Gauss-Lobatto points
- \blacktriangleright Quadrature \hat{R} , weights \hat{W}
- **Exaluation:** \hat{B}, \hat{D}

3D reference element

$$
\begin{aligned} \hat{W} &= \hat{W} \otimes \hat{W} \otimes \hat{W} &\hat{D}_0 &= \hat{D} \otimes \hat{B} \otimes \hat{B} \\ \hat{B} &= \hat{B} \otimes \hat{B} \otimes \hat{B} &\hat{D}_1 &= \hat{B} \otimes \hat{D} \otimes \hat{B} \\ \hat{D}_2 &= \hat{B} \otimes \hat{B} \otimes \hat{D} \end{aligned}
$$

イロトス 伊 トス ミトス ミトー ミー

 2990

Nodal *hp*-version finite element methods

1D reference element

- \blacktriangleright Lagrange interpolants on Legendre-Gauss-Lobatto points
- \blacktriangleright Quadrature \hat{R} , weights \hat{W}
- **Exaluation:** \hat{B}, \hat{D}

3D reference element

$$
\begin{aligned} \hat{W} &= \hat{W} \otimes \hat{W} \otimes \hat{W} & \hat{D}_0 &= \hat{D} \otimes \hat{B} \otimes \hat{B} \\ \hat{B} &= \hat{B} \otimes \hat{B} \otimes \hat{B} & \hat{D}_1 &= \hat{B} \otimes \hat{D} \otimes \hat{B} \\ \hat{D}_2 &= \hat{B} \otimes \hat{B} \otimes \hat{D} \end{aligned}
$$

These tensor product operations are very efficient, 70% of peak flop/s

 $\mathbf{A} \equiv \mathbf{I} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{B} \mathbf{B}$

 2990

Operations on physical elements

Mapping to physical space

$$
x^e: \hat{K} \to K^e, \quad J_{ij}^e = \partial x_i^e / \partial \hat{x}_j, \quad (J^e)^{-1} = \partial \hat{x} / \partial x^e
$$

Element operations in physical space

$$
B^{e} = \hat{B} \qquad W^{e} = \hat{W}\Lambda(|J^{e}(r)|)
$$

$$
D_{i}^{e} = \Lambda \left(\frac{\partial \hat{x}_{0}}{\partial x_{i}}\right) \hat{D}_{0} + \Lambda \left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right) \hat{D}_{1} + \Lambda \left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right) \hat{D}_{2}
$$

$$
(D_{i}^{e})^{T} = \hat{D}_{0}^{T} \Lambda \left(\frac{\partial \hat{x}_{0}}{\partial x_{i}}\right) + \hat{D}_{1}^{T} \Lambda \left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right) + \hat{D}_{2}^{T} \Lambda \left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right)
$$

Global problem is defined by assembly

$$
F(u) = \sum_{e} \mathcal{E}_e^T \left[(B^e)^T W^e \Lambda(f_0(u^e, \nabla u^e)) + \sum_{i=0}^d (D_i^e)^T W^e \Lambda(f_{1,i}(u^e, \nabla u^e)) \right] = 0
$$

where $u^e = B^e \mathscr{E}^e u$ and $\nabla u^e = \{D^e_i \mathscr{E}^e u\}_{i=0}^2$

Representation of Jacobians, Automation

- \blacktriangleright For unassembled representations, decomposition, and assembly
- \triangleright Continuous weak form: find μ

$$
v^T F(u) \sim \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v \cdot f_1(u, \nabla u) = 0, \qquad \forall v \in \mathcal{V}_0
$$

 \blacktriangleright Weak form of the Jacobian $J(u)$: find w

$$
v^{T} J(u) w \sim \int_{\Omega} \left[v^{T} \nabla v^{T} \right] \begin{bmatrix} f_{0,0} & f_{0,1} \\ f_{1,0} & f_{1,1} \end{bmatrix} \begin{bmatrix} w \\ \nabla w \end{bmatrix}
$$

$$
[f_{i,j}] = \begin{bmatrix} \frac{\partial f_{0}}{\partial u} & \frac{\partial f_{0}}{\partial \nabla u} \\ \frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial \nabla u} \end{bmatrix} (u, \nabla u)
$$

- **Figure 1** Terms in $[f_{i,j}]$ easy to compute symbolically, AD more scalable.
- \triangleright Nonlinear terms f_0, f_1 usually have the most expensive nonlinearities in the computation of scalar material parameters
	- Equations of state, effective viscosity, "star" region in Riemann solve
	- \triangleright Compute gradient with reverse-mode, store at quadrature points.
	- \blacktriangleright Perturb scalars, then use forward-mode to complete the Jacobian.
	- \blacktriangleright Flip for action of the adjoint.

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρ*u*, pressure *p*, and total energy density *E*:

$$
(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta Du_i + p1) - \rho g = 0
$$

$$
\rho_t + \nabla \cdot \rho u = 0
$$

$$
E_t + \nabla \cdot ((E + p)u - k_T \nabla T - k_\omega \nabla \omega) - \eta Du_i : Du_i - \rho u \cdot g = 0
$$

- Solve for density ρ , ice velocity u_i , temperature T , and melt fraction ω using constitutive relations.
	- \triangleright Simplified constitutive relations can be solved explicitly.
	- **F** Temperature, moisture, and strain-rate dependent rheology η .
	- \blacktriangleright High order FEM, typically O_3 momentum & energy, SUPG (yuck).

K ロ K イロ K イミ K イミ K ニョー りんぐ

- \triangleright DAEs solved implicitly after semidiscretizing in space.
- **Preconditioning using nested fieldsplit**

How much nesting? $P_1 =$ $\sqrt{ }$ \mathcal{L} *Juu Jup JuE* 0 *Bpp* 0

 \blacktriangleright *B*_{pp} is a mass matrix in the pressure space weighted by inverse of kinematic viscosity.

 0 0 J_{EE}

 \setminus $\overline{1}$

- \blacktriangleright Elman, Mihajlović, Wathen, JCP 2011 for non-dimensional isoviscous Boussinesq.
- \blacktriangleright Works well for non-dimensional problems on the cube, not for realistic parameters.

$$
P = \begin{bmatrix} \begin{pmatrix} J_{uu} & J_{up} \\ J_{pu} & 0 \end{pmatrix} \\ \begin{pmatrix} J_{Eu} & J_{Ep} \end{pmatrix} & J_{EE} \end{bmatrix}
$$

- \blacktriangleright Inexact inner solve using upper-triangular with *Bpp* for Schur.
- \blacktriangleright Another level of nesting.
- \triangleright GCR tolerant of inexact inner solves.
- \triangleright Outer converges in 1 or 2 iterations.
- \triangleright Low-order preconditioning full-accuracy unassembled high order operator.
- **Build these on command line with PETSc [PC](#page-7-0)[Fi](#page-9-0)[e](#page-7-0)[ld](#page-8-0)[S](#page-9-0)[pl](#page-0-0)[it](#page-18-0)[.](#page-0-0)**
All the series and the series of the seri

K ロ X K 個 X K 差 X K 差 X …差… 2990

CPU traversal code

```
\triangleright CPU traversal computes coefficients of test functions,
  https://github.com/jedbrown/dohp/
  while (IteratorHasPatch(iter)) {
    IteratorGetPatchApplied(iter,&Q,&jw,
         &x,&dx,NULL,NULL,
         \&u, \&du, \&u, \&du,, \&du,, \&p, \&dp, \&p, NULL,, \&e, \&de, \&e,, \&de,);
    IteratorGetStash(iter,NULL,&stash);
    for (dInt i=0; i<0; i+1) {
      PointwiseFunction(context, x[i], dx[i], jw[i],
           u[i],du[i],p[i],dp[i],e[i],de[i],
           \&stash[i], u_[i],du_[i],p_[i],e_[i],de_[i]);
    }
    IteratorCommitPatchApplied(iter,INSERT_VALUES, NULL,NULL,
                                  u_-, du_-, p_-, NULL, e_-, de_-);IteratorNextPatch(iter);
  }
\triangleright GPU version calls PointwiseFunction() directly.
\blacktriangleright Unassembled Jacobian application reuses stash
  PointwiseJacobian(context, &stash[i], dx[i], jw[i],
                      u[i], du[i], p[i], dp[i], e[i], de[i],e_[i], de_{-}[i]),
```
Finer grained parallelism for GPUs

- \triangleright One element per thread uses too much local memory.
- ▶ Would like to use *about* one quadrature point per thread.
- \blacktriangleright Tensor product requires several synchronizations

 $\tilde{u} = (A \otimes B \otimes C)u$ $= (A \otimes I \otimes I)(I \otimes B \otimes I)(I \otimes I \otimes C)u$

- \triangleright Accumulation easy if only one thread accumulates into a location.
- \triangleright Threads within a warp are implicitly synchronized, no need for __syncthreads().
- \triangleright Synchronization scope depends on approx order

Evaluate basis and process values at quadrature points Map values at quadrature *t*0 t_{0} points to coefficients *t*1 *t*1 t_{0} $|t_0|$ $|t_0|$ *t*1 *t*1 *t*1 *t*2 *t*2 *t*2 *t*2 *t*2 Continue with kernel *t*3 *t*3 *t*3 *t*3 $|t_3|$ *t*4 *t*4 \mathbf{I} *t*4 *t*5 *t*5 $t_{\rm{5}}$ \mathbf{I} *t*4 *t*4 *t*5 *t*5 <u>4点</u>

Finer grained parallelism for GPUs, low order

 Ω

Avoiding copies

```
typedef enum {
  PETSC_CUSP_UNALLOCATED,
  PETSC_CUSP_GPU,
  PETSC_CUSP_CPU,
  PETSC_CUSP_BOTH
```
- } PetscCUSPFlag;
- \blacktriangleright Flag used for matrices and vectors.
- \triangleright Data stays on GPU until it is needed on CPU (e.g. for MPI).
- \triangleright Control flow for matrix and vector operations resides on CPU
	- \blacktriangleright almost all implementations run on GPU
	- \triangleright can mix and match CPU-only and GPU-accelerated algorithms (but would need to pay for more copies)

KORKARYKERKE POLO

- \triangleright Currently always update the whole array
	- \triangleright could order for low-volume updates

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV [ban](#page-14-0)[dw](#page-16-0)[i](#page-14-0)[dth](#page-15-0)[wa](#page-0-0)[ll](#page-18-0) $<$ [4](#page-0-0)[%](#page-18-0)

Hardware Arithmetic Intensity

On preconditioning and multigrid

- \triangleright Currently using assembled matrices for preconditioning
- \triangleright Want matrix-free preconditioners for high hardware utilization
- Geometric *h* and *p*-multigrid, could be FAS
- \triangleright Smoothers build/solve with small dense matrices
	- \triangleright "point" matrices: can use single threads
	- \blacktriangleright "element" matrices: need to cooperate within thread blocks
	- \blacktriangleright I want a dense linear algebra library to be called collectively within a thread block

KORKARYKERKE POLO

- Multiplicative (Gauss-Seidel) is algorithmically nice
- \triangleright Spectral analysis for polynomial/multi-stage smoothers
- \triangleright Coarser levels better to do on CPU
	- \triangleright Potential for additive correction to run concurrently

Outlook

- \triangleright Sparse matrix assembly (for preconditioning)
	- \blacktriangleright > 100 GF/s for lowest order Stokes (Matt Knepley)
	- \triangleright common "pointwise" physics code with CPU implementation
	- \triangleright Dohp CPU version faster than libMesh and Deal.II for Q_1
	- \triangleright Q_1 assembly embedded in higher order is 8% slower than hand-rolled
- \triangleright Matrix-free tensor-product versions reliably get about 70% of peak flops
- \blacktriangleright Finer grained parallelism in GPU tensor product kernels
- \triangleright Can't wait for OpenCL to implement indirect function calls
- \triangleright Symbolic differentiation too slow, tired of hand-differentiation
	- \blacktriangleright I want source-transformation AD with indirect function calls
- \blacktriangleright Find correct amount of reuse between face and cell integration
- \blacktriangleright Riemann solves harder to vectorize
- \blacktriangleright Hide dispatch to pointwise kernels inside library
	- **Easy, but scary. Library/framework becomes Framework.**
	- \blacktriangleright Interoperbility of user-rolled, library-provided, and generated traversal code.**K ロ K イロ K イミ K イミ K ニョー りんぐ**