
Utilizing Multicore and GPU Hardware for
Multiphysics Simulation through Implicit High-order

Finite Element Methods with Tensor Product
Structure

Jed Brown1, Aron Ahmadia2, Matt Knepley3, Barry Smith1

1Mathematics and Computer Science Division, Argonne National Laboratory
2King Abdullah University of Science and Technology

3Computation Institute, University of Chicago

2012-02-15

The Roadmap

Hardware trends

I More cores (keep hearing O(1000) per node)

I Long vector registers (already 32 bytes for AVX and BG/Q)

I Must use SMT to hide memory latency

I Must use SMT for floating point performance (GPU, BG/Q)

I Large penalty for non-contiguous memory access

“Free flops”, but how can we use them?

I High order methods good: better accuracy per storage

I High order methods bad: work unit gets larger

I GPU threads have very little memory, must keep work unit small

I Need library composability, keep user contribution
embarrassingly parallel

How to program this beast?

I Decouple physics from discretization
I Expose small, embarrassingly parallel operations to user
I Library schedules user threads for reuse between kernels
I User provides physics in kernels run at each quadrature point
I Continuous weak form: find u ∈ VD

vTF(u)∼
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

I Similar form at faces, but may involve Riemann solve
I Library manages reductions

I Interpolation and differentiation on elements
I Interaction with neighbors (limiting, edge stabilization)
I Exploit tensor product structure to keep working set small
I Assembly into solution/residual vector (sum over elements)

Nodal hp-version finite element methods

1D reference element

I Lagrange interpolants on
Legendre-Gauss-Lobatto points

I Quadrature R̂, weights Ŵ
I Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ⊗ Ŵ⊗ Ŵ

B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂

D̂1 = B̂⊗ D̂⊗ B̂

D̂2 = B̂⊗ B̂⊗ D̂

These tensor product operations
are very efficient, 70% of peak flop/s

Nodal hp-version finite element methods

1D reference element

I Lagrange interpolants on
Legendre-Gauss-Lobatto points

I Quadrature R̂, weights Ŵ
I Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ⊗ Ŵ⊗ Ŵ

B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂

D̂1 = B̂⊗ D̂⊗ B̂

D̂2 = B̂⊗ B̂⊗ D̂

These tensor product operations
are very efficient, 70% of peak flop/s

Operations on physical elements

Mapping to physical space

xe : K̂→ Ke, Je
ij = ∂xe

i /∂ x̂j, (Je)−1 = ∂ x̂/∂xe

Element operations in physical space

Be = B̂ We = ŴΛ(|Je(r)|)

De
i = Λ

(
∂ x̂0

∂xi

)
D̂0 +Λ

(
∂ x̂1

∂xi

)
D̂1 +Λ

(
∂ x̂2

∂xi

)
D̂2

(De
i)

T = D̂T
0 Λ

(
∂ x̂0

∂xi

)
+ D̂T

1 Λ

(
∂ x̂1

∂xi

)
+ D̂T

2 Λ

(
∂ x̂2

∂xi

)
Global problem is defined by assembly

F(u)=∑
e

E T
e

[
(Be)TWe

Λ(f0(ue,∇ue))+
d

∑
i=0

(De
i)

TWe
Λ(f1,i(ue,∇ue))

]
= 0

where ue = BeE eu and ∇ue = {De
i E

eu}2
i=0

Representation of Jacobians, Automation
I For unassembled representations, decomposition, and assembly
I Continuous weak form: find u

vTF(u)∼
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

I Weak form of the Jacobian J(u): find w

vTJ(u)w∼
∫

Ω

[
vT ∇vT

][f0,0 f0,1
f1,0 f1,1

][
w

∇w

]

[fi,j] =


∂ f0
∂u

∂ f0
∂∇u

∂ f1
∂u

∂ f1
∂∇u

(u,∇u)

I Terms in [fi,j] easy to compute symbolically, AD more scalable.
I Nonlinear terms f0, f1 usually have the most expensive nonlinearities

in the computation of scalar material parameters
I Equations of state, effective viscosity, “star” region in Riemann solve
I Compute gradient with reverse-mode, store at quadrature points.
I Perturb scalars, then use forward-mode to complete the Jacobian.
I Flip for action of the adjoint.

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu, pressure p, and total energy density E:

(ρu)t +∇·(ρu⊗u−ηDui +p1)−ρg = 0

ρt +∇·ρu = 0

Et +∇·
(
(E+p)u− kT∇T− kω∇ω

)
−ηDui :Dui−ρu ·g = 0

I Solve for density ρ , ice velocity ui, temperature T , and melt
fraction ω using constitutive relations.

I Simplified constitutive relations can be solved explicitly.
I Temperature, moisture, and strain-rate dependent rheology η .
I High order FEM, typically Q3 momentum & energy, SUPG (yuck).

I DAEs solved implicitly after semidiscretizing in space.

I Preconditioning using nested fieldsplit

How much nesting?

P1 =

Juu Jup JuE

0 Bpp 0
0 0 JEE


I Bpp is a mass matrix in the

pressure space weighted by
inverse of kinematic viscosity.

I Elman, Mihajlović, Wathen,
JCP 2011 for non-dimensional
isoviscous Boussinesq.

I Works well for
non-dimensional problems on
the cube, not for realistic
parameters.

P =

(Juu Jup

Jpu 0

)
(
JEu JEp

)
JEE


I Inexact inner solve using

upper-triangular with Bpp for
Schur.

I Another level of nesting.

I GCR tolerant of inexact inner
solves.

I Outer converges in 1 or 2
iterations.

I Low-order preconditioning full-accuracy unassembled high order
operator.

I Build these on command line with PETSc PCFieldSplit.

CPU traversal code
I CPU traversal computes coefficients of test functions,

https://github.com/jedbrown/dohp/
while (IteratorHasPatch(iter)) {

IteratorGetPatchApplied(iter,&Q,&jw,
&x,&dx,NULL,NULL,
&u,&du,&u_,&du_, &p,&dp,&p_,NULL, &e,&de,&e_,&de_);

IteratorGetStash(iter,NULL,&stash);
for (dInt i=0; i<Q; i++) {

PointwiseFunction(context,x[i],dx[i],jw[i],
u[i],du[i],p[i],dp[i],e[i],de[i],
&stash[i], u_[i],du_[i],p_[i],e_[i],de_[i]);

}
IteratorCommitPatchApplied(iter,INSERT_VALUES, NULL,NULL,

u_,du_, p_,NULL, e_,de_);
IteratorNextPatch(iter);

}
I GPU version calls PointwiseFunction() directly.
I Unassembled Jacobian application reuses stash

PointwiseJacobian(context,&stash[i],dx[i],jw[i],
u[i],du[i],p[i],dp[i],e[i],de[i],
u_[i],du_[i],p_[i],e_[i],de_[i]);

https://github.com/jedbrown/dohp/

Finer grained parallelism for GPUs

I One element per thread uses too much local memory.
I Would like to use about one quadrature point per thread.
I Tensor product requires several synchronizations

ũ = (A⊗B⊗C)u

= (A⊗ I⊗ I)(I⊗B⊗ I)(I⊗ I⊗C)u

I Accumulation easy if only one thread accumulates into a location.
I Threads within a warp are implicitly synchronized, no need for

__syncthreads().
I Synchronization scope depends on approx order

Element # quad pts 32T warps/element TB size

Q1 8 1/4 any
Q2 27 1 (5T unused) any
Q3 64 2 64
Q4 125 4 (3T unused) 128

Finer grained parallelism for GPUs, low order

Map values at quadrature
points to coefficients

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

Continue with kernel

Evaluate basis and
process values at
quadrature points

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

Avoiding copies

typedef enum {
PETSC_CUSP_UNALLOCATED,
PETSC_CUSP_GPU,
PETSC_CUSP_CPU,
PETSC_CUSP_BOTH

} PetscCUSPFlag;

I Flag used for matrices and vectors.

I Data stays on GPU until it is needed on CPU (e.g. for MPI).
I Control flow for matrix and vector operations resides on CPU

I almost all implementations run on GPU
I can mix and match CPU-only and GPU-accelerated algorithms

(but would need to pay for more copies)
I Currently always update the whole array

I could order for low-volume updates

Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%

Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)

Sandy Bridge 6-core 21* 150 7.2
Magny Cours 16-core 42* 281 6.7
Blue Gene/Q node 43 205 4.8
GeForce 9400M 21 54 2.6
GTX 285 159 1062 6.8
Tesla M2050 144 1030 7.1

On preconditioning and multigrid

I Currently using assembled matrices for preconditioning

I Want matrix-free preconditioners for high hardware utilization

I Geometric h- and p-multigrid, could be FAS
I Smoothers build/solve with small dense matrices

I “point” matrices: can use single threads
I “element” matrices: need to cooperate within thread blocks
I I want a dense linear algebra library to be called collectively within

a thread block

I Multiplicative (Gauss-Seidel) is algorithmically nice

I Spectral analysis for polynomial/multi-stage smoothers
I Coarser levels better to do on CPU

I Potential for additive correction to run concurrently

Outlook
I Sparse matrix assembly (for preconditioning)

I > 100 GF/s for lowest order Stokes (Matt Knepley)
I common “pointwise” physics code with CPU implementation
I Dohp CPU version faster than libMesh and Deal.II for Q1
I Q1 assembly embedded in higher order is 8% slower than

hand-rolled
I Matrix-free tensor-product versions reliably get about 70% of

peak flops
I Finer grained parallelism in GPU tensor product kernels
I Can’t wait for OpenCL to implement indirect function calls
I Symbolic differentiation too slow, tired of hand-differentiation

I I want source-transformation AD with indirect function calls
I Find correct amount of reuse between face and cell integration
I Riemann solves harder to vectorize
I Hide dispatch to pointwise kernels inside library

I Easy, but scary. Library/framework becomes Framework.
I Interoperbility of user-rolled, library-provided, and generated

traversal code.

