Utilizing Multicore and GPU Hardware for Multiphysics Simulation through Implicit High-order Finite Element Methods with Tensor Product Structure

Jed Brown¹, Aron Ahmadia², Matt Knepley³, Barry Smith¹

¹Mathematics and Computer Science Division, Argonne National Laboratory ²King Abdullah University of Science and Technology ³Computation Institute, University of Chicago

2012-02-15

The Roadmap

Hardware trends

- More cores (keep hearing $\mathcal{O}(1000)$ per node)
- Long vector registers (already 32 bytes for AVX and BG/Q)
- Must use SMT to hide memory latency
- Must use SMT for floating point performance (GPU, BG/Q)
- Large penalty for non-contiguous memory access

"Free flops", but how can we use them?

- High order methods good: better accuracy per storage
- High order methods bad: work unit gets larger
- GPU threads have very little memory, must keep work unit small
- Need library composability, keep user contribution embarrassingly parallel

How to program this beast?

- Decouple physics from discretization
 - Expose small, embarrassingly parallel operations to user
 - Library schedules user threads for reuse between kernels
 - User provides physics in kernels run at each quadrature point
 - Continuous weak form: find $u \in \mathscr{V}_D$

$$v^T F(u) \sim \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) = 0, \quad \forall v \in \mathscr{V}_0$$

- Similar form at faces, but may involve Riemann solve
- Library manages reductions
 - Interpolation and differentiation on elements
 - Interaction with neighbors (limiting, edge stabilization)
 - Exploit tensor product structure to keep working set small
 - Assembly into solution/residual vector (sum over elements)

Nodal hp-version finite element methods

1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature \hat{R} , weights \hat{W}
- Evaluation: \hat{B}, \hat{D}

3D reference element

$$\begin{array}{ll} \hat{W} = \hat{W} \otimes \hat{W} \otimes \hat{W} & \hat{D}_0 = \hat{D} \otimes \hat{B} \otimes \hat{B} \\ \hat{B} = \hat{B} \otimes \hat{B} \otimes \hat{B} & \hat{D}_1 = \hat{B} \otimes \hat{D} \otimes \hat{B} \\ \hat{D}_2 = \hat{B} \otimes \hat{B} \otimes \hat{D} \end{array}$$

These tensor product operations are very efficient, 70% of peak flop/s

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Nodal hp-version finite element methods

1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature \hat{R} , weights \hat{W}
- Evaluation: \hat{B}, \hat{D}

3D reference element

These tensor product operations are very efficient, 70% of peak flop/s

Operations on physical elements

Mapping to physical space

$$x^e: \hat{K} \to K^e, \quad J^e_{ij} = \partial x^e_i / \partial \hat{x}_j, \quad (J^e)^{-1} = \partial \hat{x} / \partial x^e$$

Element operations in physical space

$$B^{e} = \hat{B} \qquad W^{e} = \hat{W}\Lambda(|J^{e}(r)|)$$
$$D_{i}^{e} = \Lambda\left(\frac{\partial \hat{x}_{0}}{\partial x_{i}}\right)\hat{D}_{0} + \Lambda\left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right)\hat{D}_{1} + \Lambda\left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right)\hat{D}_{2}$$
$$(D_{i}^{e})^{T} = \hat{D}_{0}^{T}\Lambda\left(\frac{\partial \hat{x}_{0}}{\partial x_{i}}\right) + \hat{D}_{1}^{T}\Lambda\left(\frac{\partial \hat{x}_{1}}{\partial x_{i}}\right) + \hat{D}_{2}^{T}\Lambda\left(\frac{\partial \hat{x}_{2}}{\partial x_{i}}\right)$$

Global problem is defined by assembly

$$F(u) = \sum_{e} \mathscr{E}_{e}^{T} \left[(B^{e})^{T} W^{e} \Lambda(f_{0}(u^{e}, \nabla u^{e})) + \sum_{i=0}^{d} (D_{i}^{e})^{T} W^{e} \Lambda(f_{1,i}(u^{e}, \nabla u^{e})) \right] = 0$$

where $u^e = B^e \mathscr{E}^e u$ and $\nabla u^e = \{D^e_i \mathscr{E}^e u\}_{i=0}^2$

Representation of Jacobians, Automation

- For unassembled representations, decomposition, and assembly
- Continuous weak form: find u

$$v^T F(u) \sim \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) = 0, \quad \forall v \in \mathscr{V}_0$$

Weak form of the Jacobian J(u): find w

$${}^{T}J(u)w \sim \int_{\Omega} \begin{bmatrix} v^{T} & \nabla v^{T} \end{bmatrix} \begin{bmatrix} f_{0,0} & f_{0,1} \\ f_{1,0} & f_{1,1} \end{bmatrix} \begin{bmatrix} w \\ \nabla w \end{bmatrix}$$
$$[f_{i,j}] = \begin{bmatrix} \frac{\partial f_{0}}{\partial u} & \frac{\partial f_{0}}{\partial \nabla u} \\ \frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial \nabla u} \end{bmatrix} (u, \nabla u)$$

- Terms in $[f_{i,j}]$ easy to compute symbolically, AD more scalable.
- ► Nonlinear terms *f*₀,*f*₁ usually have the most expensive nonlinearities in the computation of scalar material parameters
 - Equations of state, effective viscosity, "star" region in Riemann solve
 - Compute gradient with reverse-mode, store at quadrature points.
 - Perturb scalars, then use forward-mode to complete the Jacobian.
 - Flip for action of the adjoint.

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu , pressure p, and total energy density E:

$$(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta D u_i + p 1) - \rho g = 0$$

$$\rho_t + \nabla \cdot \rho u = 0$$

$$E_t + \nabla \cdot ((E+p)u - k_T \nabla T - k_\omega \nabla \omega) - \eta D u_i : D u_i - \rho u \cdot g = 0$$

- Solve for density ρ, ice velocity u_i, temperature T, and melt fraction ω using constitutive relations.
 - Simplified constitutive relations can be solved explicitly.
 - Temperature, moisture, and strain-rate dependent rheology η.
 - High order FEM, typically Q_3 momentum & energy, SUPG (yuck).

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- DAEs solved implicitly after semidiscretizing in space.
- Preconditioning using nested fieldsplit

How much nesting?

$$P_{1} = \begin{pmatrix} J_{uu} & J_{up} & J_{uE} \\ 0 & B_{pp} & 0 \\ 0 & 0 & J_{EE} \end{pmatrix}$$

- *B_{pp}* is a mass matrix in the pressure space weighted by inverse of kinematic viscosity.
- Elman, Mihajlović, Wathen, JCP 2011 for non-dimensional isoviscous Boussinesq.
- Works well for non-dimensional problems on the cube, not for realistic parameters.

$$P = \begin{bmatrix} \begin{pmatrix} J_{uu} & J_{up} \\ J_{pu} & 0 \end{pmatrix} & \\ \begin{pmatrix} J_{Eu} & J_{Ep} \end{pmatrix} & J_{EE} \end{bmatrix}$$

- Inexact inner solve using upper-triangular with B_{pp} for Schur.
- Another level of nesting.
- GCR tolerant of inexact inner solves.
- Outer converges in 1 or 2 iterations.
- Low-order preconditioning full-accuracy unassembled high order operator.
- Build these on command line with PETSc PCFieldSplit.

・ロト・「聞・・問・・問・・日・

CPU traversal code

```
    CPU traversal computes coefficients of test functions,

  https://github.com/jedbrown/dohp/
  while (IteratorHasPatch(iter)) {
    IteratorGetPatchApplied(iter,&Q,&jw,
        &x,&dx,NULL,NULL,
        &u,&du,&u_,&du_, &p,&dp,&p_,NULL, &e,&de,&e_,&de_);
    IteratorGetStash(iter,NULL,&stash);
    for (dInt i=0; i<Q; i++) {
      PointwiseFunction(context,x[i],dx[i],jw[i],
          u[i],du[i],p[i],dp[i],e[i],de[i],
          &stash[i], u_[i],du_[i],p_[i],e_[i],de_[i]);
    }
    IteratorCommitPatchApplied(iter,INSERT_VALUES, NULL,NULL,
                                 u_,du_, p_,NULL, e_,de_);
    IteratorNextPatch(iter);
  }
GPU version calls PointwiseFunction() directly.

    Unassembled Jacobian application reuses stash

  PointwiseJacobian(context,&stash[i],dx[i],jw[i],
                     u[i],du[i],p[i],dp[i],e[i],de[i],
                     u_[i],du_[i],p_[i],e_[i],de_[i]);
                                                ロト 4 個 ト 4 画 ト 4 画 ト - 画 - のへの
```

Finer grained parallelism for GPUs

- One element per thread uses too much local memory.
- Would like to use *about* one quadrature point per thread.
- Tensor product requires several synchronizations

 $\tilde{u} = (A \otimes B \otimes C)u$ $= (A \otimes I \otimes I)(I \otimes B \otimes I)(I \otimes I \otimes C)u$

- Accumulation easy if only one thread accumulates into a location.
- Threads within a warp are implicitly synchronized, no need for __syncthreads().
- Synchronization scope depends on approx order

Element	# quad pts	32T warps/element	TB size
Q_1	8	1/4	any
Q_2	27	1 (5T unused)	any
Q_3	64	2	64
Q_4	125	4 (3T unused)	128

Finer grained parallelism for GPUs, low order

Avoiding copies

```
typedef enum {
   PETSC_CUSP_UNALLOCATED,
   PETSC_CUSP_GPU,
   PETSC_CUSP_CPU,
   PETSC_CUSP_BOTH
} DeteeGUSPElerum
```

- } PetscCUSPFlag;
- Flag used for matrices and vectors.
- Data stays on GPU until it is needed on CPU (e.g. for MPI).
- Control flow for matrix and vector operations resides on CPU
 - almost all implementations run on GPU
 - can mix and match CPU-only and GPU-accelerated algorithms (but would need to pay for more copies)
- Currently always update the whole array
 - could order for low-volume updates

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%</p>

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)
Sparse matrix-vector product	1/6
Dense matrix-vector product	1/4
Unassembled matrix-vector product	pprox 8
High-order residual evaluation	> 5

Processor	BW (GB/s)	Peak (GF/s)	Balanced AI (F/B)
Sandy Bridge 6-core	21*	150	7.2
Magny Cours 16-core	42*	281	6.7
Blue Gene/Q node	43	205	4.8
GeForce 9400M	21	54	2.6
GTX 285	159	1062	6.8
Tesla M2050	144	1030	7.1

On preconditioning and multigrid

- Currently using assembled matrices for preconditioning
- Want matrix-free preconditioners for high hardware utilization
- Geometric h- and p-multigrid, could be FAS
- Smoothers build/solve with small dense matrices
 - "point" matrices: can use single threads
 - "element" matrices: need to cooperate within thread blocks
 - I want a dense linear algebra library to be called collectively within a thread block

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Multiplicative (Gauss-Seidel) is algorithmically nice
- Spectral analysis for polynomial/multi-stage smoothers
- Coarser levels better to do on CPU
 - Potential for additive correction to run concurrently

Outlook

- Sparse matrix assembly (for preconditioning)
 - ► > 100 GF/s for lowest order Stokes (Matt Knepley)
 - common "pointwise" physics code with CPU implementation
 - Dohp CPU version faster than libMesh and Deal.II for Q₁
 - ► *Q*₁ assembly embedded in higher order is 8% slower than hand-rolled
- Matrix-free tensor-product versions reliably get about 70% of peak flops
- Finer grained parallelism in GPU tensor product kernels
- Can't wait for OpenCL to implement indirect function calls
- Symbolic differentiation too slow, tired of hand-differentiation
 - I want source-transformation AD with indirect function calls
- Find correct amount of reuse between face and cell integration
- Riemann solves harder to vectorize
- Hide dispatch to pointwise kernels inside library
 - Easy, but scary. Library/framework becomes Framework.
 - Interoperbility of user-rolled, library-provided, and generated traversal code.