Commuting Block Preconditioned Splitting with Multigrid within the Same Code Base

Jed Brown 1 , Matt Knepley 2 , Dave May 3 , Barry Smith 1

¹ Mathematics and Computer Science Division, Argonne National Laboratory ²Computation Institute, University of Chicago ³ETH Zürich

2012-02-17

K ロ K K (日 K K B K X B K H X K K K B K D K C K

Multiphysics problems

Examples

- \triangleright Saddle-point problems (e.g. incompressibility, contact)
- \triangleright Stiff waves (e.g. low-Mach combustion)
- \triangleright Mixed type (e.g. radiation hydrodynamics, ALE free-surface flows)
- \blacktriangleright Multi-domain problems (e.g. fluid-structure interaction)
- \blacktriangleright Full space PDE-constrained optimization

Software/algorithmic considerations

- \triangleright Separate groups develop different "physics" components
- \triangleright Do not know a priori which methods will have good algorithmic properties
- \triangleright Achieving high throughput is more complicated
- \blacktriangleright Multiple time and/or spatial scales
	- \triangleright Splitting methods are delicate, often not in asymptotic regime
	- \triangleright Strongest nonlinearities usually non-stiff: prefer explicit for TVD K ロ X K @ X K 할 X K 할 X (할 X) 할 X 9 Q (V limiters/shocks

The Great Solver Schism: Monolithic or Split?

Monolithic

- \blacktriangleright Direct solvers
- \blacktriangleright Coupled Schwarz
- ▶ Coupled Neumann-Neumann (need unassembled matrices)
- \blacktriangleright Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- \blacktriangleright Physics-split Schwarz (based on relaxation)
- \blacktriangleright Physics-split Schur (based on factorization)
	- \blacktriangleright approximate commutators SIMPLE, PCD, LSC
	- \blacktriangleright segregated smoothers
	- \blacktriangleright Augmented Lagrangian
	- \blacktriangleright "parabolization" for stiff waves

KORKARYKERKE POLO

- X Need to understand global coupling strengths
- \blacktriangleright Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \triangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

Momentum Stokes Pressure

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \triangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \triangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \blacktriangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

Boundary Layer

Ocean

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \blacktriangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

Splitting for Multiphysics

$$
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}
$$

 \blacktriangleright Relaxation: -pc_fieldsplit_type [additive,multiplicative,symmetric_multiplicative] *A D* $\begin{bmatrix} A & D \ C & D \end{bmatrix}^{-1} \qquad \begin{bmatrix} A & A \ C & D \end{bmatrix}$ 1 1^{-1} $($ $1-\begin{bmatrix} A & B \\ 1 & A \end{bmatrix}$ 1 $\left[\begin{bmatrix} A & D \ C & D \end{bmatrix}^{-1}\right]$

 \triangleright Gauss-Seidel inspired, works when fields are loosely coupled ▶ Factorization: -pc_fieldsplit_type schur

$$
\begin{bmatrix} A & B \\ & S \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B
$$

- \triangleright robust (exact factorization), can often drop lower block
- \triangleright how to precondition *S* which is usually dense?
	- \blacktriangleright interpret as differential operators, use a[pp](#page-7-0)r[oxi](#page-9-0)[m](#page-7-0)[at](#page-8-0)[e](#page-9-0) [co](#page-0-0)[mm](#page-24-0)[uta](#page-0-0)[tor](#page-24-0)[s](#page-0-0)

 000

Work in Split Local space, matrix data structures reside in any space.

Multiphysics Assembly Code: Residuals

```
FormFunction_Coupled(SNES snes,Vec X,Vec F,void *ctx) {
  struct UserCtx *user = ctx;
  // ...
  SNESGetDM(snes,&pack);
  DMCompositeGetEntries(pack,&dau,&dak);
  DMCompositeScatter(pack,X,Uloc,Kloc);
  DMDAVecGetArray(dau,Uloc,&u);
  DMDAVecGetArray(dak,Kloc,&k);
  DMCompositeGetAccess(pack,F,&Fu,&Fk);
  DMDAVecGetArray(dau,Fu,&fu);
  DMDAVecGetArray(dak,Fk,&fk);
  FormFunctionLocal_U(user, &infou,u,k,fu); // u residual with k qiven
  FormFunctionLocal_K(user, &infok,u,k,fk); // k residual with u qiven
  DMDAVecRestoreArray(dau,Fu,&fu);
  // More restores
```
KORKARYKERKER POLO

Multiphysics Assembly Code: Jacobians

```
FormJacobian_Coupled(SNES snes,Vec X,Mat *J,Mat *B,...) {
  // Access components as for residuals
  MatGetLocalSubMatrix(*B,is[0],is[0],&Buu);
  MatGetLocalSubMatrix(*B,is[0],is[1],&Buk);
  MatGetLocalSubMatrix(*B,is[1],is[0], &Bku);
  MatGetLocalSubMatrix(*B,is[1],is[1], &Bkk);
  FormJacobianLocal_U(user, &infou,u,k, Buu); \frac{1}{s} // single physics
  FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
  FormJacobianLocal_KU(user, &infou, &infok,u,k, Bku); // coupling
  FormJacobianLocal_K(user, &infok,u,k, Bkk); \frac{1}{s} // single physics
  MatRestoreLocalSubMatrix(*B,is[0],is[0], &Buu);
  // More restores
```
- \triangleright Assembly code is independent of matrix format
- \triangleright Single-physics code is used unmodified for coupled problem
- \blacktriangleright No-copy fieldsplit:

-pack_dm_mat_type nest -pc_type fieldsplit

 \blacktriangleright Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_facto[r_m](#page-10-0)[at_](#page-12-0)[s](#page-10-0)[ol](#page-11-0)[v](#page-12-0)[er_](#page-0-0)[pa](#page-24-0)[cka](#page-0-0)[ge](#page-24-0) [mu](#page-0-0)[mps](#page-24-0)
 \Box

MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *B);

- \blacktriangleright Primarily for assembly
	- \triangleright B is not quaranteed to implement MatMult
	- \blacktriangleright The communicator for B is not specified, only safe to use non-collective ops (unless you check)
- \triangleright IS represents an index set, includes a block size and communicator
- \blacktriangleright MatSetValuesBlockedLocal() is implemented
- \blacktriangleright MatNest returns nested submatrix, no-copy
- \triangleright No-copy for Neumann-Neumann formats (unassembled across procs, e.g. BDDC, FETI-DP)
- \triangleright Most other matrices return a lightweight proxy Mat
	- \triangleright COMM SELF
	- \triangleright Values not copied, does not implement MatMult
	- \triangleright Translates indices to the language of the parent matrix

KORKARYKERKER POLO

 \triangleright Multiple levels of nesting are flattened

Monolithic nonlinear solvers

Coupled nonlinear multigrid accelerated by NGMRES with multi-stage smoothers

```
-lidvelocity 200 -grashof 1e4
-snes_grid_sequence 5 -snes_monitor -snes_view
-snes_type ngmres
-npc_snes_type fas
-npc_snes_max_it 1
-npc_fas_coarse_snes_type ls
-npc_fas_coarse_ksp_type preonly
-npc_fas_snes_type ms
-npc_fas_snes_max_it 1
-npc_fas_ksp_type preonly
-npc_fas_pc_type pbjacobi
-npc_fas_snes_ms_type vltp61
-npc_fas_snes_max_it 1
```
 \triangleright Uses only residuals and point-block diagonal

KORKARYKERKER POLO

 \blacktriangleright High arithmetic intensity and parallelism

Stokes + Implicit Free Surface

$$
\[\left[\eta D_{ij}(\mathbf{u}) \right]_{,j} - p_{,i} = f_i
$$

$$
u_{k,k} = 0
$$

$$
\hat{x}_i = \hat{x}_i^{t - \Delta t} + \Delta t \, u_i(\hat{x}_i)
$$

COORDINATE RESIDUALS

$$
F_x := -u_i + \frac{\hat{x}_i}{\Delta t} - \frac{\hat{x}_i^{t-\Delta}}{\Delta t}
$$

[We use a full Lagrangian update of our mesh, with no remeshing]

JACOBIAN *Reuse stokes operators and saddle point preconditioners* NESTED PRECONDITIONER $\mathcal{P}_{si} = \begin{bmatrix} \begin{bmatrix} \mathcal{P}_s^l \end{bmatrix} & \mathcal{P}_s^l = \begin{bmatrix} A & 0 \\ B^T & -S \end{bmatrix} \end{bmatrix}$

May, Le Pourhiet & Brown: Coupled Geodynamics

16

"Drunken seaman", Rayleigh Taylor instability test case from Kaus et al., 2010. Dense, viscous material (yellow) overlying less dense, less viscous material (blue).

Stokes + Implicit Free Surface

May, Le Pourhiet & Brown: Coupled Geodynamics

18

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρ*u*, pressure *p*, and total energy density *E*:

$$
(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta Du_i + p1) - \rho g = 0
$$

$$
\rho_t + \nabla \cdot \rho u = 0
$$

$$
E_t + \nabla \cdot ((E + p)u - k_T \nabla T - k_\omega \nabla \omega) - \eta Du_i : Du_i - \rho u \cdot g = 0
$$

- Solve for density ρ , ice velocity u_i , temperature T , and melt fraction ω using constitutive relations.
	- \triangleright Simplified constitutive relations can be solved explicitly.
	- **F** Temperature, moisture, and strain-rate dependent rheology η .

A O A G A 4 O A C A G A 4 O A 4 O A C A

- \blacktriangleright High order FEM, typically O_3 momentum & energy
- \triangleright DAEs solved implicitly after semidiscretizing in space.
- **Preconditioning using nested fieldsplit**

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV [ban](#page-17-0)[dw](#page-19-0)[i](#page-17-0)[dth](#page-18-0)[wa](#page-0-0)[ll](#page-24-0) $<$ [4](#page-0-0)[%](#page-24-0)

Relative effect of the blocks

$$
J = \begin{pmatrix} J_{uu} & J_{up} & J_{uE} \\ J_{pu} & 0 & 0 \\ J_{Eu} & J_{Ep} & J_{EE} \end{pmatrix}.
$$

- *Juu* Viscous/momentum terms, nearly symmetric, variable coefficionts, anisotropy from Newton.
- *Jup* Weak pressure gradient, viscosity dependence on pressure (small), gravitational contribution (pressure-induced density variation). Large, nearly balanced by gravitational forcing.
- *JuE* Viscous dependence on energy, very nonlinear, not very large.
- J_{pu} Divergence (mass conservation), nearly equal to J_{up}^T .
- *JEu* Sensitivity of energy on momentum, mostly advective transport. Large in boundary layers with large thermal/moisture gradients.
- *JEp* Thermal/moisture diffusion due to pressure-melting, *u* ·∇.
- *JEE* Advection-diffusion for energy, very nonlinear at small regularization. Advection-dominated except in boundary layers and stagnant ice, often balanced in vertic[al.](#page-18-0)

How much nesting? $P_1 =$ $\sqrt{ }$ \mathcal{L} *Juu Jup JuE* 0 *Bpp* 0

 \blacktriangleright *B*_{pp} is a mass matrix in the pressure space weighted by inverse of kinematic viscosity.

 0 0 J_{EE}

 \setminus $\overline{1}$

- \blacktriangleright Elman, Mihajlović, Wathen, JCP 2011 for non-dimensional isoviscous Boussinesq.
- \blacktriangleright Works well for non-dimensional problems on the cube, not for realistic parameters.

$$
P = \begin{bmatrix} \begin{pmatrix} J_{uu} & J_{up} \\ J_{pu} & 0 \end{pmatrix} \\ \begin{pmatrix} J_{Eu} & J_{Ep} \end{pmatrix} & J_{EE} \end{bmatrix}
$$

- \blacktriangleright Inexact inner solve using upper-triangular with *Bpp* for Schur.
- \blacktriangleright Another level of nesting.
- \triangleright GCR tolerant of inexact inner solves.
- \triangleright Outer converges in 1 or 2 iterations.
- \triangleright Low-order preconditioning full-accuracy unassembled high order operator.
- **Build these on command line with PETSc [PC](#page-19-0)[Fi](#page-21-0)[e](#page-19-0)[ld](#page-20-0)[S](#page-21-0)[pl](#page-0-0)[it](#page-24-0)[.](#page-0-0)**
All the series and the series of the seri

Example 3×3 problem with nested 2×2 split

-fieldsplit_s_ksp_type gcr -fieldsplit_s_ksp_rtol 1e-1 -fieldsplit_s_ksp_monitor_vht -fieldsplit_s_ksp_monitor_singular_value -fieldsplit_s_pc_type fieldsplit -fieldsplit_s_pc_fieldsplit_type schur -fieldsplit_s_pc_fieldsplit_real_diagonal -fieldsplit_s_pc_fieldsplit_schur_factorization_type lower -fieldsplit_s_fieldsplit_u_ksp_type gmres -fieldsplit_s_fieldsplit_u_ksp_max_it 10 -fieldsplit_s_fieldsplit_u_pc_type asm -fieldsplit_s_fieldsplit_u_sub_pc_type ilu -fieldsplit_s_fieldsplit_u_sub_pc_factor_levels 1 -fieldsplit_s_fieldsplit_u_ksp_converged_reason -fieldsplit_s_fieldsplit_p_ksp_type preonly -fieldsplit_s_fieldsplit_p_ksp_max_it 1 -fieldsplit_s_fieldsplit_p_pc_type jacobi -fieldsplit_e_ksp_type gmres -fieldsplit_e_ksp_converged_reason -fieldsplit_e_pc_type asm -fieldsplit_e_sub_pc_type ilu -fieldsplit_e_sub_pc_factor_levels 2**K ロ K - K 제공 X 제공 X 제공 및 및 X 이익(N)**

Coupled MG for Stokes, split smoothers

$$
J = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}
$$

$$
P_{\text{smooth}} = \begin{pmatrix} A_{\text{SOR}} & 0 \\ B & M \end{pmatrix}
$$

イロトメ 御 トメ 君 トメ 君 トッ 君

 2990

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_block_size 3 -mg_levels_pc_fieldsplit_0_fields 0,1 -mg_levels_pc_fieldsplit_1_fields 2 -mg_levels_fieldsplit_0_pc_type sor

Phase field models

State variables $u = (u_1, ..., u_N)^T$ are concentrations of different phases satisfying the inequality and sum constraints

$$
u(x,t) \in G = \{v \in \mathbb{R}^d | v_i \ge 0, \sum_{i=1}^N v_i = 1\}, \quad \forall (x,t) \in Q.
$$

Minimize free energy, reduced space active set method

$$
J = \begin{pmatrix} A & 0 & 0 & -I \\ 0 & A & 0 & -I \\ 0 & 0 & A & -I \\ -I & -I & -I & 0 \end{pmatrix}, \qquad P = \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A & 0 & 0 \\ 0 & 0 & A & 0 \\ -I & -I & -I & S_{LSC} \end{pmatrix}
$$

A O A G A 4 O A C A G A 4 O A 4 O A C A

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_detect_saddle_point -pc_fieldsplit_type schur -pc_fieldsplit_schur_precondition self -fieldsplit_0_ksp_type preonly -fieldsplit_0_pc_type hypre -fieldsplit_1_ksp_type fgmres -fieldsplit_1_pc_type lsc

Outlook

- \triangleright Unintrusive composition of multigrid and block preconditioning
- \triangleright We can build many preconditioners from the literature *on the command line*
- \triangleright User code does not depend on matrix format, preconditioning method, nonlinear solution method, time integration method (implicit or IMEX), or size of coupled system (except for driver).

In development

- \triangleright Distributive relaxation, Vanka smoothers
- \blacktriangleright Algebraic coarsening of "dual" variables
- Improving operator-dependent semi-geometric multigrid
- More automatic spectral analysis and smoother optimization
- \blacktriangleright Better interaction with IMEX time integration
	- \blacktriangleright Additive Runge-Kutta, Rosenbrock-W, linear multistep

KORKARYKERKE POLO

- \triangleright Composability with FAS
- \triangleright Possible parallel-in-time approaches