
Towards High Throughput Composable Multilevel
Solvers for Implicit Multiphysics Simulation

Jed Brown1,
Matt Knepley2, Dave May3, Barry Smith1

1Mathematics and Computer Science Division, Argonne National Laboratory
2Computation Institute, University of Chicago

3ETH Zürich

MIT 2012-03-21

Computational
Science &

Engineering

Application
Areas

Continuum
modeling

Policy &
Market

Observation

Quantities
of interest

Deterministic
Modeling

Discretization

Solvers

Parallel
Algorithms

Efficiency

Software

Analysis &
Uncertainty

Stability

SensitivityOptimization

Data
assimilation
& validation

Outline

Composable Solvers

Time Integration

Implementation Efficiency

Multiphysics problems
Examples

I Saddle-point problems (e.g. incompressibility, contact)

I Stiff waves (e.g. low-Mach combustion)

I Mixed type (e.g. radiation hydrodynamics, ALE free-surface flows)

I Multi-domain problems (e.g. fluid-structure interaction)

I Full space PDE-constrained optimization

Software/algorithmic considerations

I Separate groups develop different “physics” components

I Do not know a priori which methods will have good algorithmic
properties

I Achieving high throughput is more complicated
I Multiple time and/or spatial scales

I Splitting methods are delicate, often not in asymptotic regime
I Strongest nonlinearities usually non-stiff: prefer explicit for TVD

limiters/shocks

The Great Solver Schism: Monolithic or Split?

Monolithic

I Direct solvers

I Coupled Schwarz

I Coupled Neumann-Neumann
(need unassembled matrices)

I Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

I Physics-split Schwarz
(based on relaxation)

I Physics-split Schur
(based on factorization)

I approximate commutators
SIMPLE, PCD, LSC

I segregated smoothers
I Augmented Lagrangian
I “parabolization” for stiff

waves

X Need to understand global
coupling strengths

I Preferred data structures depend on which method is used.

I Interplay with geometric multigrid.

Multi-physics coupling in PETSc

Momentum Pressure

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
I Relaxation: -pc_fieldsplit_type

[additive,multiplicative,symmetric_multiplicative][
A

D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

I Gauss-Seidel inspired, works when fields are loosely coupled
I Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[1
CA−1 1

]−1

, S = D−CA−1B

I robust (exact factorization), can often drop lower block
I how to precondition S which is usually dense?

I interpret as differential operators, use approximate commutators

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Work in Split Local space, matrix data structures reside in any space.

Multiphysics Assembly Code: Jacobians
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {

// Access components as for residuals
MatGetLocalSubMatrix(B,is[0],is[0],&Buu);
MatGetLocalSubMatrix(B,is[0],is[1],&Buk);
MatGetLocalSubMatrix(B,is[1],is[0],&Bku);
MatGetLocalSubMatrix(B,is[1],is[1],&Bkk);
FormJacobianLocal_U(user,&infou,u,k,Buu); // single physics
FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
FormJacobianLocal_KU(user,&infou,&infok,u,k,Bku); // coupling
FormJacobianLocal_K(user,&infok,u,k,Bkk); // single physics
MatRestoreLocalSubMatrix(B,is[0],is[0],&Buu);
// More restores

I Assembly code is independent of matrix format
I Single-physics code is used unmodified for coupled problem
I No-copy fieldsplit:

-pack_dm_mat_type nest -pc_type fieldsplit
I Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps

MatGetLocalSubMatrix(Mat A,IS rows,IS cols,Mat *B);
I Primarily for assembly

I B is not guaranteed to implement MatMult
I The communicator for B is not specified,

only safe to use non-collective ops (unless you check)

I IS represents an index set, includes a block size and
communicator

I MatSetValuesBlockedLocal() is implemented

I MatNest returns nested submatrix, no-copy

I No-copy for Neumann-Neumann formats
(unassembled across procs, e.g. BDDC, FETI-DP)

I Most other matrices return a lightweight proxy Mat
I COMM_SELF
I Values not copied, does not implement MatMult
I Translates indices to the language of the parent matrix
I Multiple levels of nesting are flattened

Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

(
A B
BT 0

)

Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type additive

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type jacobi

-fieldsplit_1_ksp_type preonly

(
Â 0
0 I

)
Cohouet and Chabard, Some fast 3D finite element solvers for the generalized Stokes
problem, 1988.

Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type multiplicative

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type jacobi

-fieldsplit_1_ksp_type preonly

(
Â B
0 I

)
Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.

Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

(
Â 0
0 −Ŝ

)
-pc_fieldsplit_schur_factorization_type diag

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2007.

Olshanskii, Peters, and Reusken Uniform preconditioners for a parameter dependent
saddle point problem with application to generalized Stokes interface equations, 2006.

Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

(
Â 0
BT Ŝ

)
-pc_fieldsplit_schur_factorization_type lower

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2007.

Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

(
Â B
0 Ŝ

)
-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2007.

Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type lsc

-fieldsplit_1_ksp_type minres

(
Â B
0 ŜLSC

)
-pc_fieldsplit_schur_factorization_type full

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2007.

Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on
approximate commutators, 2006.

Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur
-pc_fieldsplit_schur_factorization_type(

I 0
BTA−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)

Coupled MG for Stokes, split smoothers

J =

(
A BT

B C

)
Psmooth =

(
ASOR 0

B M

)

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_block_size 3
-mg_levels_pc_fieldsplit_0_fields 0,1
-mg_levels_pc_fieldsplit_1_fields 2
-mg_levels_fieldsplit_0_pc_type sor

Monolithic nonlinear solvers

Coupled nonlinear multigrid accelerated by NGMRES with
multi-stage smoothers

-lidvelocity 200 -grashof 1e4
-snes_grid_sequence 5 -snes_monitor -snes_view
-snes_type ngmres
-npc_snes_type fas
-npc_snes_max_it 1
-npc_fas_coarse_snes_type ls
-npc_fas_coarse_ksp_type preonly
-npc_fas_snes_type ms
-npc_fas_snes_ms_type vltp61
-npc_fas_snes_max_it 1
-npc_fas_ksp_type preonly
-npc_fas_pc_type pbjacobi
-npc_fas_snes_max_it 1

I Uses only residuals and point-block diagonal

I High arithmetic intensity and parallelism

Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region

NRichardson Nonlinear Richardson, usually preconditioned

VIRS, VIRSAUG, and VISS reduced space and semi-smooth
methods for variational inequalities

QN Quasi-Newton methods like BFGS

NGMRES Nonlinear GMRES

NCG Nonlinear Conjugate Gradients

SORQN Multiplicative Schwarz quasi-Newton

GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps

FAS Full approximation scheme (nonlinear multigrid)

MS Multi-stage smoothers, often used with FAS for
hyperbolic problems

Shell Your method, often used as a (nonlinear) preconditioner

The Drunken Seaman instability

I Subduction and mantle convection with a free surface.
I Free surface critical to long-term dynamics

(e.g. mountain range formation)
I Advective 0.01 CFL for stability.
I Semi-implicit helps: Kaus, Mühlhaus, and May, 2010

Text
May, Le Pourhiet & Brown: Coupled Geodynamics

Stokes + Implicit Free Surface

16

“Drunken seaman”, Rayleigh
Taylor instability test case from
Kaus et al., 2010. Dense, viscous
material (yellow) overlying less
dense, less viscous material
(blue).

Momentum

Pressure“S
to

ke
s”

Coordinates

COORDINATE RESIDUALS

JACOBIAN

NESTED PRECONDITIONER

Reuse stokes
operators and
saddle point

preconditioners

[We use a full Lagrangian update of our mesh, with no remeshing]

16Sunday, December 4, 2011

Text
May, Le Pourhiet & Brown: Coupled Geodynamics 17

Stokes + Implicit Free Surface

* Picard fails to converge for
large time steps sizes.

* Newton is robust for a wide
range of time step sizes.

[nonlinear residual stagnates!]

[nonlinear residual stagnates!]

17Sunday, December 4, 2011

Text
May, Le Pourhiet & Brown: Coupled Geodynamics

Stokes + Implicit Free Surface

18

* The nonlinear residual ALWAYS
increases from one step to the next.

* A nonlinear solve is required to
control the error.

* An accurate nonlinear solve on the
first time step, combined with 1 or 2
nonlinear iterations on subsequent
steps still results in severe errors.
This is true even when dt is small.

18Sunday, December 4, 2011

Holt et al.

2006

Bathymetry and stickyness distribution

I Bathymetry:
I Aspect ratio ε = [H]/[x]� 1
I Need surface and bed slopes to be small

I Stickyness distribution:
I Limiting cases of plug flow versus vertical shear
I Stress ratio: λ = [τxz]/[τmembrane]
I Discontinuous: frozen to slippery transition at ice stream margins

I Standard approach in glaciology:
Taylor expand in ε and sometimes λ , drop higher order terms.

λ � 1 Shallow Ice Approximation (SIA), no horizontal coupling
λ � 1 Shallow Shelf Approximation (SSA), 2D elliptic solve in map-plane

I Hydrostatic and various hybrids, 2D or 3D elliptic solves
I Bed slope is discontinuous and of order 1.

I Taylor expansions no longer valid
I Numerics require high resolution, subgrid parametrization, short

time steps
I Still get low quality results in the regions of most interest.

Bathymetry and stickyness distribution

I Bathymetry:
I Aspect ratio ε = [H]/[x]� 1
I Need surface and bed slopes to be small

I Stickyness distribution:
I Limiting cases of plug flow versus vertical shear
I Stress ratio: λ = [τxz]/[τmembrane]
I Discontinuous: frozen to slippery transition at ice stream margins

I Standard approach in glaciology:
Taylor expand in ε and sometimes λ , drop higher order terms.

λ � 1 Shallow Ice Approximation (SIA), no horizontal coupling
λ � 1 Shallow Shelf Approximation (SSA), 2D elliptic solve in map-plane

I Hydrostatic and various hybrids, 2D or 3D elliptic solves
I Bed slope is discontinuous and of order 1.

I Taylor expansions no longer valid
I Numerics require high resolution, subgrid parametrization, short

time steps
I Still get low quality results in the regions of most interest.

Polythermal ice

I Interface tracking methods (Greve’s SICOPOLIS)
I Different fields for temperate and cold ice.
I Lagrangian or Eulerian, problems with changing topology
I No discrete conservation

I Interface capturing
I Enthalpy: Aschwanden, Bueler, Khroulev, Blatter (J. Glac. 2012)

I Not in conservation form
I Only conservative for infinitesimal melt fraction

I Energy
I Conserves mass, momentum, and energy for arbitrary melt fraction
I Implicit equation of state

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu, pressure p, and total energy density E:

(ρu)t +∇·(ρu⊗u−ηDui +p1)−ρg = 0

ρt +∇·ρu = 0

Et +∇·
(
(E+p)u− kT∇T− kω∇ω

)
−ηDui :Dui−ρu ·g = 0

I Solve for density ρ , ice velocity ui, temperature T , and melt
fraction ω using constitutive relations.

I Simplified constitutive relations can be solved explicitly.
I Temperature, moisture, and strain-rate dependent rheology η .
I High order FEM, typically Q3 momentum & energy

I DAEs solved implicitly after semidiscretizing in space.

I Preconditioning using nested fieldsplit

Relative effect of the blocks

J =

Juu Jup JuE

Jpu 0 0
JEu JEp JEE

 .

Juu Viscous/momentum terms, nearly symmetric, variable
coefficionts, anisotropy from Newton.

Jup Weak pressure gradient, viscosity dependence on pressure
(small), gravitational contribution (pressure-induced density
variation). Large, nearly balanced by gravitational forcing.

JuE Viscous dependence on energy, very nonlinear, not very large.
Jpu Divergence (mass conservation), nearly equal to JT

up.
JEu Sensitivity of energy on momentum, mostly advective transport.

Large in boundary layers with large thermal/moisture gradients.
JEp Thermal/moisture diffusion due to pressure-melting, u ·∇.
JEE Advection-diffusion for energy, very nonlinear at small

regularization. Advection-dominated except in boundary layers
and stagnant ice, often balanced in vertical.

How much nesting?

P1 =

Juu Jup JuE

0 Bpp 0
0 0 JEE

I Bpp is a mass matrix in the

pressure space weighted by
inverse of kinematic viscosity.

I Elman, Mihajlović, Wathen,
JCP 2011 for non-dimensional
isoviscous Boussinesq.

I Works well for
non-dimensional problems on
the cube, not for realistic
parameters.

P =

(Juu Jup

Jpu 0

)
(
JEu JEp

)
JEE

I Inexact inner solve using

upper-triangular with Bpp for
Schur.

I Another level of nesting.

I GCR tolerant of inexact inner
solves.

I Outer converges in 1 or 2
iterations.

I Low-order preconditioning full-accuracy unassembled high order
operator.

I Build these on command line with PETSc PCFieldSplit.

Phase field models
State variables u = (u1, ...,uN)

T are concentrations of different phases
satisfying the inequality and sum constraints

u(x, t) ∈ G = {v ∈ Rd|vi ≥ 0,
N

∑
i=1

vi = 1}, ∀(x, t) ∈ Q.

Minimize free energy, reduced space active set method

J =

A 0 0 −I
0 A 0 −I
0 0 A −I
−I −I −I 0

 , P =

A 0 0 0
0 A 0 0
0 0 A 0
−I −I −I SLSC

-ksp_type fgmres -pc_type fieldsplit
-pc_fieldsplit_detect_saddle_point
-pc_fieldsplit_type schur
-pc_fieldsplit_schur_precondition self
-fieldsplit_0_ksp_type preonly
-fieldsplit_0_pc_type hypre
-fieldsplit_1_ksp_type fgmres
-fieldsplit_1_pc_type lsc

Outline

Composable Solvers

Time Integration

Implementation Efficiency

Motivation for IMEX time integration

I Explicit methods are easy and accurate, but must resolve all time
scales

I reactions, acoustics, incompressibility
I Implicit methods are robust

I mathematically good for stiff systems
I harder to implement, need efficient solvers

I Implicit-explicit methods are fragile and complicated
I Severe order reduction
I Still need implicit solvers, similar complexity to implicit
I

Motivation for IMEX time integration

I Explicit methods are easy and accurate, but must resolve all time
scales

I reactions, acoustics, incompressibility
I Implicit methods are robust

I mathematically good for stiff systems
I harder to implement, need efficient solvers

I Implicit-explicit methods are fragile and complicated
I Severe order reduction
I Still need implicit solvers, similar complexity to implicit
I Why bother?

Motivation for IMEX time integration

I Explicit methods are easy and accurate, but must resolve all time
scales

I reactions, acoustics, incompressibility
I Implicit methods are robust

I mathematically good for stiff systems
I harder to implement, need efficient solvers

I Implicit-explicit methods are fragile and complicated
I Severe order reduction
I Still need implicit solvers, similar complexity to implicit
I Very expensive non-stiff residual evaluation
I Non-stiff components are non-smooth.

I TVD limiters for monotone transport
I Phase change

IMEX time integration in PETSc
I Additive Runge-Kutta IMEX methods

G(t,x, ẋ) = F(t,x)

Jα = αGẋ +Gx

I User provides:
I FormRHSFunction(ts,t,x,F,void *ctx);
I FormIFunction(ts,t,x,ẋ,G,void *ctx);
I FormIJacobian(ts,t,x,ẋ,α,J,Jp,mstr,void *ctx);

I L-stable DIRK for stiff part G
I Choice of explicit method, e.g. SSP
I Orders 2 through 5, embedded error estimates
I Dense output, hot starts for Newton
I More accurate methods if G is linear, also Rosenbrock-W
I Can use preconditioner from classical “semi-implicit” methods
I Extensible adaptive controllers, can change order within a family
I Easy to register new methods: TSARKIMEXRegister()

I Eliminate many interface quirks
I Single step interface so user can have own time loop

10
−4

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

time step

L
∞

 e
rr

o
r

n
o
rm

rks2

rks3

3

assp3p3s1c

Stiff advection-reaction accuracy

0 1 2 3 4 5
10

−8

10
−6

10
−4

10
−2

10
0

wallclock time

L
∞

 e
rr

o
r

n
o

rm

rks2

rks3

a2

2e

3

4

Stiff advection-reaction efficiency

3D Resistive MHD

I Designing IMEX methods with specific stability properties, e.g.
L-stable implicit, A-stable embedded, SSP explicit with optimal
stability on the imaginary axis.

Outlook on Solver Composition

I Unintrusive composition of multigrid and block preconditioning

I We can build many preconditioners from the literature
on the command line

I User code does not depend on matrix format, preconditioning
method, nonlinear solution method, time integration method
(implicit or IMEX), or size of coupled system (except for driver).

In development

I Distributive relaxation, Vanka smoothers

I Algebraic coarsening of “dual” variables

I Improving operator-dependent semi-geometric multigrid

I More automatic spectral analysis and smoother optimization

I Automated support for mixing analysis into levels

Outline

Composable Solvers

Time Integration

Implementation Efficiency

The Roadmap

Hardware trends

I More cores (keep hearing O(1000) per node)

I Long vector registers (already 32 bytes for AVX and BG/Q)

I Must use SMT to hide memory latency

I Must use SMT for floating point performance (GPU, BG/Q)

I Large penalty for non-contiguous memory access

“Free flops”, but how can we use them?

I High order methods good: better accuracy per storage

I High order methods bad: work unit gets larger

I GPU threads have very little memory, must keep work unit small

I Need library composability, keep user contribution
embarrassingly parallel

How to program this beast?

I Decouple physics from discretization
I Expose small, embarrassingly parallel operations to user
I Library schedules user threads for reuse between kernels
I User provides physics in kernels run at each quadrature point
I Continuous weak form: find u ∈ VD

vTF(u)∼
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

I Similar form at faces, but may involve Riemann solve
I Library manages reductions

I Interpolation and differentiation on elements
I Interaction with neighbors (limiting, edge stabilization)
I Exploit tensor product structure to keep working set small
I Assembly into solution/residual vector (sum over elements)

Nodal hp-version finite element methods

1D reference element

I Lagrange interpolants on
Legendre-Gauss-Lobatto points

I Quadrature R̂, weights Ŵ
I Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ⊗ Ŵ⊗ Ŵ

B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂

D̂1 = B̂⊗ D̂⊗ B̂

D̂2 = B̂⊗ B̂⊗ D̂

These tensor product operations
are very efficient, 70% of peak flop/s

Nodal hp-version finite element methods

1D reference element

I Lagrange interpolants on
Legendre-Gauss-Lobatto points

I Quadrature R̂, weights Ŵ
I Evaluation: B̂, D̂

3D reference element

Ŵ = Ŵ⊗ Ŵ⊗ Ŵ

B̂ = B̂⊗ B̂⊗ B̂

D̂0 = D̂⊗ B̂⊗ B̂

D̂1 = B̂⊗ D̂⊗ B̂

D̂2 = B̂⊗ B̂⊗ D̂

These tensor product operations
are very efficient, 70% of peak flop/s

Operations on physical elements

Mapping to physical space

xe : K̂→ Ke, Je
ij = ∂xe

i /∂ x̂j, (Je)−1 = ∂ x̂/∂xe

Element operations in physical space

Be = B̂ We = ŴΛ(|Je(r)|)

De
i = Λ

(
∂ x̂0

∂xi

)
D̂0 +Λ

(
∂ x̂1

∂xi

)
D̂1 +Λ

(
∂ x̂2

∂xi

)
D̂2

(De
i)

T = D̂T
0 Λ

(
∂ x̂0

∂xi

)
+ D̂T

1 Λ

(
∂ x̂1

∂xi

)
+ D̂T

2 Λ

(
∂ x̂2

∂xi

)
Global problem is defined by assembly

F(u)=∑
e

E T
e

[
(Be)TWe

Λ(f0(ue,∇ue))+
d

∑
i=0

(De
i)

TWe
Λ(f1,i(ue,∇ue))

]
= 0

where ue = BeE eu and ∇ue = {De
i E

eu}2
i=0

Representation of Jacobians, Automation
I For unassembled representations, decomposition, and assembly
I Continuous weak form: find u

vTF(u)∼
∫

Ω

v · f0(u,∇u)+∇v : f1(u,∇u) = 0, ∀v ∈ V0

I Weak form of the Jacobian J(u): find w

vTJ(u)w∼
∫

Ω

[
vT ∇vT

][f0,0 f0,1
f1,0 f1,1

][
w

∇w

]

[fi,j] =

∂ f0
∂u

∂ f0
∂∇u

∂ f1
∂u

∂ f1
∂∇u

(u,∇u)

I Terms in [fi,j] easy to compute symbolically, AD more scalable.
I Nonlinear terms f0, f1 usually have the most expensive nonlinearities

in the computation of scalar material parameters
I Equations of state, effective viscosity, “star” region in Riemann solve
I Compute gradient with reverse-mode, store at quadrature points.
I Perturb scalars, then use forward-mode to complete the Jacobian.
I Flip for action of the adjoint.

Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%

Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)

Sandy Bridge 6-core 21* 150 7.2
Magny Cours 16-core 42* 281 6.7
Blue Gene/Q node 43 205 4.8
Tesla M2050 144 515 3.6

Finer grained parallelism for GPU FEM

I One element per thread uses too much local memory.
I Would like to use about one quadrature point per thread.
I Tensor product requires several synchronizations

ũ = (A⊗B⊗C)u

= (A⊗ I⊗ I)(I⊗B⊗ I)(I⊗ I⊗C)u

I Accumulation easy if only one thread accumulates into a location.
I Threads within a warp are implicitly synchronized, no need for

__syncthreads().
I Synchronization scope depends on approx order

Element # quad pts 32T warps/element TB size

Q1 8 1/4 any
Q2 27 1 (5T unused) any
Q3 64 2 64
Q4 125 4 (3T unused) 128

Finer grained parallelism for GPUs, low order

Map values at quadrature
points to coefficients

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

Continue with kernel

Evaluate basis and
process values at
quadrature points

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

On preconditioning and multigrid

I Often using assembled matrices for preconditioning

I Prefer matrix-free preconditioners for high hardware utilization

I Geometric h- and p-multigrid, could be FAS
I Smoothers build/solve with small dense matrices

I “point” matrices: can use single threads
I “element” matrices: need to cooperate within thread blocks
I I want a dense linear algebra library to be called collectively within

a thread block

I Multiplicative (Gauss-Seidel) is algorithmically nice

I Spectral analysis for polynomial/multi-stage smoothers
I Coarser levels better to do on CPU

I Potential for additive correction to run concurrently

Outlook
I Sparse matrix assembly (for preconditioning)

I > 100 GF/s for lowest order Stokes (Matt Knepley)
I common “pointwise” physics code with CPU implementation
I Dohp CPU version faster than libMesh and Deal.II for Q1
I Q1 assembly embedded in higher order is 8% slower than

hand-rolled
I Matrix-free tensor-product versions reliably get about 70% of

peak flops
I Finer grained parallelism in GPU tensor product kernels
I Can’t wait for OpenCL to implement indirect function calls
I Symbolic differentiation too slow, tired of hand-differentiation

I I want source-transformation AD with indirect function calls
I Find correct amount of reuse between face and cell integration
I Riemann solves harder to vectorize
I Hide dispatch to pointwise kernels inside library

I Easy, but scary. Library/framework becomes Framework.
I Interoperbility of user-rolled, library-provided, and generated

traversal code.

I Maximize science per Watt
I Huge scope remains at problem

formulation
I Raise level of abstraction at which a

problem is formally specified
I Algorithmic optimality is crucial

	Composable Solvers
	Time Integration
	Implementation Efficiency

