Scalable and Composable Implicit Solvers for Polythermal Ice Flow with Steep Topography

Jed Brown¹, Matt Knepley², Dave May³, Barry Smith¹

¹Mathematics and Computer Science Division, Argonne National Laboratory ²Computation Institute, University of Chicago ³ETH Zürich

SCA 2012-04-03

Bathymetry and stickyness distribution

- Bathymetry:
 - Aspect ratio $\varepsilon = [H]/[x] \ll 1$
 - Need surface and bed slopes to be small
- Stickyness distribution:
 - Limiting cases of plug flow versus vertical shear
 - Stress ratio: $\lambda = [\tau_{xz}]/[\tau_{membrane}]$
 - Discontinuous: frozen to slippery transition at ice stream margins
- Standard approach in glaciology: Taylor expand in ε and sometimes λ , drop higher order terms.
- $\lambda \gg 1$ Shallow Ice Approximation (SIA), no horizontal coupling
- $\lambda \ll 1~$ Shallow Shelf Approximation (SSA), 2D elliptic solve in map-plane
 - Hydrostatic and various hybrids, 2D or 3D elliptic solves
- Bed slope is discontinuous and of order 1.
 - Taylor expansions no longer valid
 - Numerics require high resolution, subgrid parametrization, short time steps
 - Still get low quality results in the regions of most interest.
- Basal sliding parameters are discontinuous.

Hydrostatic equations for ice sheet flow

- ► Valid when $w_x \ll u_z$, independent of basal friction (Schoof&Hindmarsh 2010)
- ► Eliminate *p* and *w* from Stokes by incompressibility: 3D elliptic system for u = (u, v)

$$-\nabla \cdot \left[\eta \begin{pmatrix} 4u_x + 2v_y & u_y + v_x & u_z \\ u_y + v_x & 2u_x + 4v_y & v_z \end{pmatrix} \right] + \rho g \overline{\nabla} h = 0$$

$$\eta(\theta, \gamma) = \frac{B(\theta)}{2} (\gamma_0 + \gamma)^{\frac{1-n}{2n}}, \quad n \approx 3$$
$$\gamma = u_x^2 + v_y^2 + u_x v_y + \frac{1}{4} (u_y + v_x)^2 + \frac{1}{4} u_z^2 + \frac{1}{4} v_z^2$$

and slip boundary $\sigma \cdot n = \beta^2 u$ where

$$\begin{split} \beta^2(\gamma_b) &= \beta_0^2 (\varepsilon_b^2 + \gamma_b)^{\frac{\mathfrak{m}-1}{2}}, \qquad 0 < \mathfrak{m} \le 1\\ \gamma_b &= \frac{1}{2} (u^2 + v^2) \end{split}$$

► Q1 FEM with Newton-Krylov-Multigrid solver in PETSc: src/snes/examples/tutorials/ex48.c

Grid-sequenced Newton-Krylov solution of test X. The solid lines denote nonlinear iterations, and the dotted lines with \times denote linear residuals.

- Bathymetry is essentially discontinuous on any grid
- Shallow ice approximation produces oscillatory solutions
- Nonlinear and linear solvers have major problems or fail
- Grid sequenced Newton-Krylov multigrid works as well as in the smooth case

Figure: Grid sequenced Newton-Krylov convergence for test *Y*. The "cliff" has 58° angle in the red line (12×125 meter elements), 73° for the cyan line (6×62 meter elements).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Polythermal ice

- Interface tracking methods (Greve's SICOPOLIS)
 - Different fields for temperate and cold ice.
 - Lagrangian or Eulerian, problems with changing topology
 - No discrete conservation
- Interface capturing
 - Enthalpy: Aschwanden, Bueler, Khroulev, Blatter (J. Glac. 2012)
 - Not in conservation form
 - Only conservative for infinitesimal melt fraction
 - Energy
 - Conserves mass, momentum, and energy for arbitrary melt fraction

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Implicit equation of state

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu , pressure p, and total energy density E:

$$(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta D u_i + p 1) - \rho g = 0$$

$$\rho_t + \nabla \cdot \rho u = 0$$

$$E_t + \nabla \cdot ((E+p)u - k_T \nabla T - k_\omega \nabla \omega) - \eta D u_i : D u_i - \rho u \cdot g = 0$$

- Solve for density ρ, ice velocity u_i, temperature T, and melt fraction ω using constitutive relations.
 - Simplified constitutive relations can be solved explicitly.
 - Temperature, moisture, and strain-rate dependent rheology η.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- High order FEM, typically Q₃ momentum & energy
- DAEs solved implicitly after semidiscretizing in space.
- Preconditioning using nested fieldsplit

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

MomentumStokes Pressure

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

Boundary Layer

Ocean

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

► Relaxation: -pc_fieldsplit_type [additive,multiplicative,symmetric_multiplicative] $\begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{pmatrix}^{-1} \begin{pmatrix} A \\$

Gauss-Seidel inspired, works when fields are loosely coupled
 Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} A & B \\ & S \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators

Work in Split Local space, matrix data structures reside in any space.

Multiphysics Assembly Code: Jacobians

```
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {
    // Access components as for residuals
    MatGetLocalSubMatrix(B,is[0],is[0],&Buu);
    MatGetLocalSubMatrix(B,is[0],is[1],&Buk);
    MatGetLocalSubMatrix(B,is[1],is[0],&Bku);
    MatGetLocalSubMatrix(B,is[1],is[1],&Bkk);
    FormJacobianLocal_U(user,&infou,u,k,Buu); // single physics
    FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
    FormJacobianLocal_KU(user,&infou,&infok,u,k,Bku); // single physics
    MatRestoreLocalSubMatrix(B,is[0],is[0],&Buu);
    // More restores
```

- Assembly code is independent of matrix format
- Single-physics code is used unmodified for coupled problem
- No-copy fieldsplit:

```
-pack_dm_mat_type nest -pc_type fieldsplit
```

Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The common block preconditioners for Stokes require only options:

 $\begin{pmatrix} \hat{A} & 0 \\ 0 & I \end{pmatrix}$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Cohouet and Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, 1988.

The common block preconditioners for Stokes require only options:

```
-pc_type fieldsplit
-pc_field_split_type
multiplicative
```

```
-fieldsplit_0_pc_type ml
```

- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type jacobi
- -fieldsplit_1_ksp_type preonly

 $\begin{pmatrix} \hat{A} & B \\ 0 & I \end{pmatrix}$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres
- -pc_fieldsplit_schur_factorization_type diag

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2007.

Olshanskii, Peters, and Reusken Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations, 2006.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The common block preconditioners for Stokes require only options:

```
-pc_type fieldsplit
```

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2007.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The common block preconditioners for Stokes require only options:

```
-pc_type fieldsplit
```

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

```
-fieldsplit_1_pc_type none
```

-fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type upper

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2007.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type lsc
- -fieldsplit_1_ksp_type minres
- -pc_fieldsplit_schur_factorization_type full

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2007.

Elman, Howle, Shadid, Shuttleworth, and Tuminaro, *Block preconditioners based on approximate commutators*, 2006.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The common block preconditioners for Stokes require only options:

$$\begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix}$$

Coupled MG for Stokes, split smoothers

$$J = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}$$
$$P_{\text{smooth}} = \begin{pmatrix} A_{\text{SOR}} & 0 \\ B & M \end{pmatrix}$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

æ

Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region NRichardson Nonlinear Richardson, usually preconditioned VIRS, VIRSAUG, and VISS reduced space and semi-smooth methods for variational inequalities QN Quasi-Newton methods like BFGS NGMRES Nonlinear GMRES NCG Nonlinear Conjugate Gradients SORQN Multiplicative Schwarz guasi-Newton GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps FAS Full approximation scheme (nonlinear multigrid) MS Multi-stage smoothers, often used with FAS for hyperbolic problems Shell Your method, often used as a (nonlinear) preconditioner

Quasi-Newton revisited: ameliorating setup costs

Lag	Fι	unctionEval	JacobianEva	al I	PCSetUp	PCApply	
1 bt	12	2	8	8	3	31	
1 cp	31		6	(6	24	
2 bt	2 bt — diverged —						
2 cp	41		4	4	1	35	
3 ср	50)	4	4	1	44	
Jacobian-free Newton-Krylov with lagged preconditioner							
Lag	Fu	nctionEval	JacobianEva	.I F	PCSetUp	PCApply	
1 bt	23		11	1	1	31	
2 bt	48		4	4		36	
3 bt	64		3	З		52	
4 bt	87		3	З		75	
Limited-memory Quasi-Newton/BFGS with lagged solve for H_0							
Resta	rt	H_0	FunctionEval	Jac	obianEval	PCSetUp	PCApply
1 cp		10^{-5}	17	4		4	35
1 cp		preonly	21	5		5	10
3 ср		10^{-5}	21	3		3	43
3 ср		preonly	23	3		3	11
6 cp		10^{-5}	29	2		2	60
6 cp		preonly	29	2		2	14

Relative effect of the blocks

$$J = \begin{pmatrix} J_{uu} & J_{up} & J_{uE} \\ J_{pu} & 0 & 0 \\ J_{Eu} & J_{Ep} & J_{EE} \end{pmatrix}.$$

- *J_{uu}* Viscous/momentum terms, nearly symmetric, variable coefficients, anisotropy from Newton.
- J_{up} Weak pressure gradient, viscosity dependence on pressure (small), gravitational contribution (pressure-induced density variation). Large, nearly balanced by gravitational forcing.
- J_{uE} Viscous dependence on energy, very nonlinear, not very large.
- J_{pu} Divergence (mass conservation), nearly equal to J_{up}^{T} .
- J_{Eu} Sensitivity of energy on momentum, mostly advective transport. Large in boundary layers with large thermal/moisture gradients.
- J_{Ep} Thermal/moisture diffusion due to pressure-melting, $u \cdot \nabla$.
- *J_{EE}* Advection-diffusion for energy, very nonlinear at small regularization. Advection-dominated except in boundary layers and stagnant ice, often balanced in vertical.

How much nesting?

$$P_{1} = \begin{pmatrix} J_{uu} & J_{up} & J_{uE} \\ 0 & B_{pp} & 0 \\ 0 & 0 & J_{EE} \end{pmatrix}$$

- *B_{pp}* is a mass matrix in the pressure space weighted by inverse of kinematic viscosity.
- Elman, Mihajlović, Wathen, JCP 2011 for non-dimensional isoviscous Boussinesq.
- Works well for non-dimensional problems on the cube, not for realistic parameters.

$$P = \begin{bmatrix} \begin{pmatrix} J_{uu} & J_{up} \\ J_{pu} & 0 \end{pmatrix} & \\ \begin{pmatrix} J_{Eu} & J_{Ep} \end{pmatrix} & J_{EE} \end{bmatrix}$$

- Inexact inner solve using upper-triangular with B_{pp} for Schur.
- Another level of nesting.
- GCR tolerant of inexact inner solves.
- Outer converges in 1 or 2 iterations.
- Low-order preconditioning full-accuracy unassembled high order operator.
- Build these on command line with PETSc PCFieldSplit.

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%</p>

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)
Sparse matrix-vector product	1/6
Dense matrix-vector product	1/4
Unassembled matrix-vector product	pprox 8
High-order residual evaluation	> 5

Processor	BW (GB/s)	Peak (GF/s)	Balanced AI (F/B)
Sandy Bridge 6-core	21*	150	7.2
Magny Cours 16-core	42*	281	6.7
Blue Gene/Q node	43	205	4.8
Tesla M2050	144	515	3.6

One level of *p*-multigrid

- Want to skip assembly on finest level (for better throughput)
- High order operators lack h-ellipticity
 - Necessary and sufficient condition for existence of pointwise smoother
- Use embedded low-order operator as smoother
 - Rescaled to recover a consistent inner product
 - Does not destroy symmetry for point-block Jacobi
- Polynomial smoothers
 - Target upper part of PBJacobi-preconditioned spectrum

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Efficient GPU implementation
- Reordered incomplete factorization to couple "columns"
- Operator-dependent interpolation is more delicate
- Strict semi-coarsening requires semi-structured grid

Construction of conservative nodal normals

$$n^i = \int_{\Gamma} \phi^i n$$

- Exact conservation even with rough surfaces
- Definition is robust in 2D and for first-order elements in 3D
- $\int_{\Gamma} \phi^i = 0$ for corner basis function of undeformed P_2 triangle
- May be negative for sufficiently deformed quadrilaterals
- Mesh motion should use normals from CAD model
 - Difference between CAD normal and conservative normal introduces correction term to conserve mass within the mesh
 - Anomolous velocities if disagreement is large (fast moving mesh, rough surface)
- Normal field not as smooth/accurate as desirable (and achievable with non-conservative normals)
 - Mostly problematic for surface tension
 - Walkley et al, On calculation of normals in free-surface flow problems, 2004

Need for well-balancing

(Behr, On the application of slip boundary condition on curved surfaces, 2004)

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

"No" boundary condition

Integration by parts produces

$$\int_{\Gamma} v \cdot T \sigma \cdot n, \qquad \sigma = \eta D u - p 1, \qquad T = 1 - n \otimes n$$

- Continuous weak form requires either
 - Dirichlet: $u|_{\Gamma} = f \implies v|_{\Gamma} = 0$
 - Neumann/Robin: $\sigma \cdot n|_{\Gamma} = g(u,p)$
- Discrete problem allows integration of σ · n "as is"
 - Extends validity of equations to include Γ
 - Not valid for continuum equations
 - Introduced by Papanastasiou, Malamataris, and Ellwood, 1992 for Navier-Stokes outflow boundaries
 - Griffiths, The 'no boundary condition' outflow boundary condition, 1997
 - ► Proves L[∞] order of accuracy O((h+1/Pe)^{p+1}) for Galerkin finite elements of order p (linear advection-diffusion)
 - Demonstrates equivalence with collocation at Radau points in outflow element
 - Used in slip boundary conditions by Behr 2004

Outlook

- Unintrusive composition of multigrid and block preconditioning
- We can build many preconditioners from the literature on the command line
- User code does not depend on matrix format, preconditioning method, nonlinear solution method, time integration method (implicit or IMEX), or size of coupled system (except for driver).
- Similar infrastructure extends to nonlinear methods
- Preliminary implementations on GPU

In development

- Distributive relaxation and Vanka smoothers
- Improved operator-dependent semi-geometric multigrid

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Automated support for mixing analysis/UQ into levels
- IMEX time stepping for geometry evolution
- Special basis functions for corners