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Bathymetry and stickyness distribution
I Bathymetry:

I Aspect ratio ε = [H]/[x]� 1
I Need surface and bed slopes to be small

I Stickyness distribution:
I Limiting cases of plug flow versus vertical shear
I Stress ratio: λ = [τxz]/[τmembrane]
I Discontinuous: frozen to slippery transition at ice stream margins

I Standard approach in glaciology:
Taylor expand in ε and sometimes λ , drop higher order terms.

λ � 1 Shallow Ice Approximation (SIA), no horizontal coupling
λ � 1 Shallow Shelf Approximation (SSA), 2D elliptic solve in map-plane

I Hydrostatic and various hybrids, 2D or 3D elliptic solves
I Bed slope is discontinuous and of order 1.

I Taylor expansions no longer valid
I Numerics require high resolution, subgrid parametrization, short time

steps
I Still get low quality results in the regions of most interest.

I Basal sliding parameters are discontinuous.



Hydrostatic equations for ice sheet flow
I Valid when wx� uz, independent of basal friction (Schoof&Hindmarsh

2010)
I Eliminate p and w from Stokes by incompressibility:

3D elliptic system for u = (u,v)
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I Q1 FEM with Newton-Krylov-Multigrid solver in PETSc:
src/snes/examples/tutorials/ex48.c
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Grid-sequenced Newton-Krylov solution of test X. The solid lines
denote nonlinear iterations, and the dotted lines with × denote linear
residuals.



I Bathymetry is essentially discontinuous on any grid
I Shallow ice approximation produces oscillatory solutions
I Nonlinear and linear solvers have major problems or fail
I Grid sequenced Newton-Krylov multigrid works

as well as in the smooth case
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Figure: Grid sequenced Newton-Krylov convergence for test Y . The “cliff”
has 58◦ angle in the red line (12×125 meter elements), 73◦ for the cyan line
(6×62 meter elements).





Polythermal ice

I Interface tracking methods (Greve’s SICOPOLIS)
I Different fields for temperate and cold ice.
I Lagrangian or Eulerian, problems with changing topology
I No discrete conservation

I Interface capturing
I Enthalpy: Aschwanden, Bueler, Khroulev, Blatter (J. Glac. 2012)

I Not in conservation form
I Only conservative for infinitesimal melt fraction

I Energy
I Conserves mass, momentum, and energy for arbitrary melt fraction
I Implicit equation of state



Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu, pressure p, and total energy density E:

(ρu)t +∇·(ρu⊗u−ηDui +p1)−ρg = 0

ρt +∇·ρu = 0

Et +∇·
(
(E+p)u− kT∇T− kω∇ω

)
−ηDui :Dui−ρu ·g = 0

I Solve for density ρ , ice velocity ui, temperature T , and melt
fraction ω using constitutive relations.

I Simplified constitutive relations can be solved explicitly.
I Temperature, moisture, and strain-rate dependent rheology η .
I High order FEM, typically Q3 momentum & energy

I DAEs solved implicitly after semidiscretizing in space.

I Preconditioning using nested fieldsplit



The Great Solver Schism: Monolithic or Split?

Monolithic

I Direct solvers

I Coupled Schwarz

I Coupled Neumann-Neumann
(need unassembled matrices)

I Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

I Physics-split Schwarz
(based on relaxation)

I Physics-split Schur
(based on factorization)

I approximate commutators
SIMPLE, PCD, LSC

I segregated smoothers
I Augmented Lagrangian
I “parabolization” for stiff

waves

X Need to understand global
coupling strengths

I Preferred data structures depend on which method is used.

I Interplay with geometric multigrid.



Multi-physics coupling in PETSc

Momentum Pressure

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting



Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting



Splitting for Multiphysics[
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C D

][
x
y

]
=
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f
g

]
I Relaxation: -pc_fieldsplit_type

[additive,multiplicative,symmetric_multiplicative][
A

D

]−1 [
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I Gauss-Seidel inspired, works when fields are loosely coupled
I Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[ 1
CA−1 1

]−1

, S = D−CA−1B

I robust (exact factorization), can often drop lower block
I how to precondition S which is usually dense?

I interpret as differential operators, use approximate commutators
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Work in Split Local space, matrix data structures reside in any space.



Multiphysics Assembly Code: Jacobians
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {

// Access components as for residuals
MatGetLocalSubMatrix(B,is[0],is[0],&Buu);
MatGetLocalSubMatrix(B,is[0],is[1],&Buk);
MatGetLocalSubMatrix(B,is[1],is[0],&Bku);
MatGetLocalSubMatrix(B,is[1],is[1],&Bkk);
FormJacobianLocal_U(user,&infou,u,k,Buu); // single physics
FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
FormJacobianLocal_KU(user,&infou,&infok,u,k,Bku); // coupling
FormJacobianLocal_K(user,&infok,u,k,Bkk); // single physics
MatRestoreLocalSubMatrix(B,is[0],is[0],&Buu);
// More restores

I Assembly code is independent of matrix format
I Single-physics code is used unmodified for coupled problem
I No-copy fieldsplit:

-pack_dm_mat_type nest -pc_type fieldsplit
I Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps



Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

(
A B
BT 0

)



Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type additive

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type jacobi

-fieldsplit_1_ksp_type preonly

(
Â 0
0 I

)
Cohouet and Chabard, Some fast 3D finite element solvers for the generalized Stokes
problem, 1988.



Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type
multiplicative

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type jacobi

-fieldsplit_1_ksp_type preonly

(
Â B
0 I

)
Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.



Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

(
Â 0
0 −Ŝ

)
-pc_fieldsplit_schur_factorization_type diag

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2007.

Olshanskii, Peters, and Reusken Uniform preconditioners for a parameter dependent
saddle point problem with application to generalized Stokes interface equations, 2006.



Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

(
Â 0
BT Ŝ

)
-pc_fieldsplit_schur_factorization_type lower

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2007.



Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type none

-fieldsplit_1_ksp_type minres

(
Â B
0 Ŝ

)
-pc_fieldsplit_schur_factorization_type upper

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2007.



Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-fieldsplit_0_pc_type ml

-fieldsplit_0_ksp_type preonly

-fieldsplit_1_pc_type lsc

-fieldsplit_1_ksp_type minres

(
Â B
0 ŜLSC

)
-pc_fieldsplit_schur_factorization_type full

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in
computational geodynamics, 2007.

Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on
approximate commutators, 2006.



Stokes Example

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur
-pc_fieldsplit_schur_factorization_type(

I 0
BTA−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)



Coupled MG for Stokes, split smoothers

J =

(
A BT

B C

)
Psmooth =

(
ASOR 0

B M

)

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_block_size 3
-mg_levels_pc_fieldsplit_0_fields 0,1
-mg_levels_pc_fieldsplit_1_fields 2
-mg_levels_fieldsplit_0_pc_type sor



Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region

NRichardson Nonlinear Richardson, usually preconditioned

VIRS, VIRSAUG, and VISS reduced space and semi-smooth
methods for variational inequalities

QN Quasi-Newton methods like BFGS

NGMRES Nonlinear GMRES

NCG Nonlinear Conjugate Gradients

SORQN Multiplicative Schwarz quasi-Newton

GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps

FAS Full approximation scheme (nonlinear multigrid)

MS Multi-stage smoothers, often used with FAS for
hyperbolic problems

Shell Your method, often used as a (nonlinear) preconditioner



Quasi-Newton revisited: ameliorating setup costs
I Newton-Krylov with analytic Jacobian

Lag FunctionEval JacobianEval PCSetUp PCApply

1 bt 12 8 8 31
1 cp 31 6 6 24
2 bt — diverged —
2 cp 41 4 4 35
3 cp 50 4 4 44

I Jacobian-free Newton-Krylov with lagged preconditioner
Lag FunctionEval JacobianEval PCSetUp PCApply

1 bt 23 11 11 31
2 bt 48 4 4 36
3 bt 64 3 3 52
4 bt 87 3 3 75

I Limited-memory Quasi-Newton/BFGS with lagged solve for H0

Restart H0 FunctionEval JacobianEval PCSetUp PCApply

1 cp 10−5 17 4 4 35
1 cp preonly 21 5 5 10
3 cp 10−5 21 3 3 43
3 cp preonly 23 3 3 11
6 cp 10−5 29 2 2 60
6 cp preonly 29 2 2 14



Relative effect of the blocks

J =

Juu Jup JuE

Jpu 0 0
JEu JEp JEE

 .

Juu Viscous/momentum terms, nearly symmetric, variable
coefficionts, anisotropy from Newton.

Jup Weak pressure gradient, viscosity dependence on pressure
(small), gravitational contribution (pressure-induced density
variation). Large, nearly balanced by gravitational forcing.

JuE Viscous dependence on energy, very nonlinear, not very large.
Jpu Divergence (mass conservation), nearly equal to JT

up.
JEu Sensitivity of energy on momentum, mostly advective transport.

Large in boundary layers with large thermal/moisture gradients.
JEp Thermal/moisture diffusion due to pressure-melting, u ·∇.
JEE Advection-diffusion for energy, very nonlinear at small

regularization. Advection-dominated except in boundary layers
and stagnant ice, often balanced in vertical.



How much nesting?

P1 =

Juu Jup JuE

0 Bpp 0
0 0 JEE


I Bpp is a mass matrix in the

pressure space weighted by
inverse of kinematic viscosity.

I Elman, Mihajlović, Wathen,
JCP 2011 for non-dimensional
isoviscous Boussinesq.

I Works well for
non-dimensional problems on
the cube, not for realistic
parameters.

P =

(Juu Jup

Jpu 0

)
(
JEu JEp

)
JEE


I Inexact inner solve using

upper-triangular with Bpp for
Schur.

I Another level of nesting.

I GCR tolerant of inexact inner
solves.

I Outer converges in 1 or 2
iterations.

I Low-order preconditioning full-accuracy unassembled high order
operator.

I Build these on command line with PETSc PCFieldSplit.



Performance of assembled versus unassembled
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tensor b = 1
tensor b = 3
tensor b = 5
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assembled b = 3
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I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)

Sandy Bridge 6-core 21* 150 7.2
Magny Cours 16-core 42* 281 6.7
Blue Gene/Q node 43 205 4.8
Tesla M2050 144 515 3.6



One level of p-multigrid

I Want to skip assembly on finest level (for better throughput)
I High order operators lack h-ellipticity

I Necessary and sufficient condition for existence of pointwise
smoother

I Use embedded low-order operator as smoother
I Rescaled to recover a consistent inner product
I Does not destroy symmetry for point-block Jacobi

I Polynomial smoothers
I Target upper part of PBJacobi-preconditioned spectrum
I Efficient GPU implementation

I Reordered incomplete factorization to couple “columns”

I Operator-dependent interpolation is more delicate

I Strict semi-coarsening requires semi-structured grid



Construction of conservative nodal normals

ni =
∫

Γ

φ
in

I Exact conservation even with rough surfaces
I Definition is robust in 2D and for first-order elements in 3D
I
∫

Γ
φ i = 0 for corner basis function of undeformed P2 triangle

I May be negative for sufficiently deformed quadrilaterals
I Mesh motion should use normals from CAD model

I Difference between CAD normal and conservative normal
introduces correction term to conserve mass within the mesh

I Anomolous velocities if disagreement is large
(fast moving mesh, rough surface)

I Normal field not as smooth/accurate as desirable
(and achievable with non-conservative normals)

I Mostly problematic for surface tension
I Walkley et al, On calculation of normals in free-surface flow

problems, 2004



Need for well-balancing

(Behr, On the application of slip boundary condition on curved surfaces, 2004)



“No” boundary condition
I Integration by parts produces∫

Γ

v ·Tσ ·n, σ = ηDu−p1, T = 1−n⊗n

I Continuous weak form requires either
I Dirichlet: u|Γ = f =⇒ v|Γ = 0
I Neumann/Robin: σ ·n|Γ = g(u,p)

I Discrete problem allows integration of σ ·n “as is”
I Extends validity of equations to include Γ

I Not valid for continuum equations
I Introduced by Papanastasiou, Malamataris, and Ellwood, 1992 for

Navier-Stokes outflow boundaries
I Griffiths, The ‘no boundary condition’ outflow boundary condition,

1997
I Proves L∞ order of accuracy O((h+1/Pe)p+1)

for Galerkin finite elements of order p (linear advection-diffusion)
I Demonstrates equivalence with collocation at Radau points

in outflow element
I Used in slip boundary conditions by Behr 2004



Outlook
I Unintrusive composition of multigrid and block preconditioning
I We can build many preconditioners from the literature

on the command line
I User code does not depend on matrix format, preconditioning

method, nonlinear solution method, time integration method
(implicit or IMEX), or size of coupled system (except for driver).

I Similar infrastructure extends to nonlinear methods
I Preliminary implementations on GPU

In development

I Distributive relaxation and Vanka smoothers

I Improved operator-dependent semi-geometric multigrid

I Automated support for mixing analysis/UQ into levels

I IMEX time stepping for geometry evolution

I Special basis functions for corners


