Towards High Throughput Composable Multilevel Solvers for Implicit Multiphysics Simulation

This talk: http://59A2.org/files/20120427-NREL.pdf

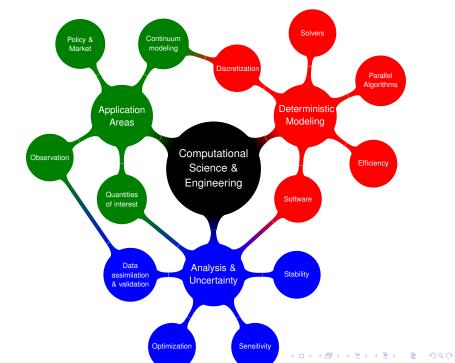
Jed Brown¹,
Peter Brune¹, Matt Knepley², Dave May³, Barry Smith¹

¹Mathematics and Computer Science Division, Argonne National Laboratory

²Computation Institute, University of Chicago

³ETH Zürich

NREL 2012-04-27



Outline

Composable Solvers

Time Integration

Implementation Efficiency

Multiphysics problems

Examples

- Saddle-point problems (e.g. incompressibility, contact)
- Stiff waves (e.g. low-Mach combustion)
- Mixed type (e.g. radiation hydrodynamics, ALE free-surface flows)
- Multi-domain problems (e.g. fluid-structure interaction)
- Full space PDE-constrained optimization

Software/algorithmic considerations

- Separate groups develop different "physics" components
- Do not know a priori which methods will have good algorithmic properties
- Achieving high throughput is more complicated
- Multiple time and/or spatial scales
 - Splitting methods are delicate, often not in asymptotic regime
 - ► Strongest nonlinearities usually non-stiff: prefer explicit for TVD limiters/shocks

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

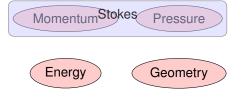
Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves
- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

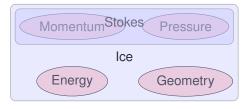
Momentum Pressure

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

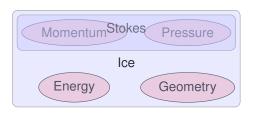
- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
 - reuse residual and Jacobian evaluation unmodified
 - direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
 - use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting



- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting



- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics
 (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting



Boundary Layer

Ocean

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

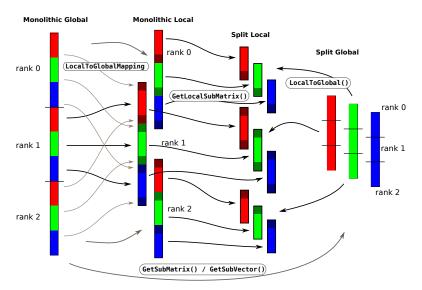
Relaxation: -pc_fieldsplit_type [additive,multiplicative,symmetric_multiplicative]

$$\begin{bmatrix} A & \\ & D \end{bmatrix}^{-1} \qquad \begin{bmatrix} A & \\ C & D \end{bmatrix}^{-1} \qquad \begin{bmatrix} A & \\ & 1 \end{bmatrix}^{-1} \left(1 - \begin{bmatrix} A & B \\ & 1 \end{bmatrix} \begin{bmatrix} A & \\ C & D \end{bmatrix}^{-1} \right)$$

- Gauss-Seidel inspired, works when fields are loosely coupled
- Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} A & B \\ S \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators



Work in Split Local space, matrix data structures reside in any space.

Multiphysics Assembly Code: Jacobians

```
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {

// Access components as for residuals

MatGetLocalSubMatrix(B,is[0],is[0],&Buu);

MatGetLocalSubMatrix(B,is[0],is[1],&Buk);

MatGetLocalSubMatrix(B,is[1],is[0],&Bku);

MatGetLocalSubMatrix(B,is[1],is[1],&Bkk);

FormJacobianLocal_U(user,&infou,u,k,Buu);

FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk);

FormJacobianLocal_KU(user,&infou,&infok,u,k,Bku);

// coupling

FormJacobianLocal_K(user,&infou,u,k,Bkk);

MatRestoreLocalSubMatrix(B,is[0],is[0],&Buu);

// More restores
```

- Assembly code is independent of matrix format
- Single-physics code is used unmodified for coupled problem
- No-copy fieldsplit:
 -pack_dm_mat_type nest -pc_type fieldsplit
- Coupled direct solve:

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix}$$

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type additive
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type jacobi
- -fieldsplit_1_ksp_type preonly

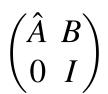
 $\begin{pmatrix} \hat{A} & 0 \\ 0 & I \end{pmatrix}$

Cohouet and Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, 1988.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
 -pc_field_split_type
 multiplicative
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type jacobi
- -fieldsplit_1_ksp_type preonly

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.



The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres
- -pc_fieldsplit_schur_factorization_type diag

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, 2007.

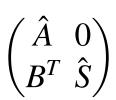
Olshanskii, Peters, and Reusken *Uniform preconditioners for a parameter dependent* saddle point problem with application to generalized Stokes interface equations, 2006.

$$\begin{pmatrix} \hat{A} & 0 \\ 0 & -\hat{S} \end{pmatrix}$$

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres
- -pc_fieldsplit_schur_factorization_type lower

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, 2007.



The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres
- -pc_fieldsplit_schur_factorization_type upper

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2007.

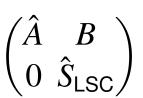
 $\begin{pmatrix} \hat{A} & B \\ 0 & \hat{S} \end{pmatrix}$

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type lsc
- -fieldsplit_1_ksp_type minres
- -pc_fieldsplit_schur_factorization_type full

May and Moresi, Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics, 2007.

Elman, Howle, Shadid, Shuttleworth, and Tuminaro, *Block preconditioners based on approximate commutators*, 2006.



The common block preconditioners for Stokes require only options:

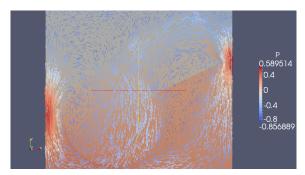
-pc_type fieldsplit
-pc_field_split_type schur
-pc_fieldsplit_schur_factorization_type

$$\begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix}$$

Coupled MG for Stokes, split smoothers

$$J = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}$$

$$P_{\text{smooth}} = \begin{pmatrix} A_{\text{SOR}} & 0 \\ B & M \end{pmatrix}$$



- -pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
- -mg_levels_pc_type fieldsplit
- $\verb|-mg_levels_pc_fieldsplit_block_size| 3$
- -mg_levels_pc_fieldsplit_0_fields 0,1
- $-{\tt mg_levels_pc_fieldsplit_1_fields}\ 2$
- -mg_levels_fieldsplit_0_pc_type sor

Monolithic nonlinear solvers

Coupled nonlinear multigrid accelerated by NGMRES with multi-stage smoothers

```
-lidvelocity 200 -grashof 1e4
-snes_grid_sequence 5 -snes_monitor -snes_view
-snes_type ngmres
-npc_snes_type fas
-npc_snes_max_it 1
-npc_fas_coarse_snes_type ls
-npc_fas_coarse_ksp_type preonly
-npc_fas_snes_type ms
-npc_fas_snes_ms_type vltp61
-npc_fas_snes_max_it 1
-npc_fas_ksp_type preonly
-npc_fas_pc_type pbjacobi
-npc_fas_snes_max_it 1
```

- Uses only residuals and point-block diagonal
- High arithmetic intensity and parallelism

Nonlinear solvers in PETSc SNES

LS, TR Newton-type with line search and trust region NRichardson Nonlinear Richardson, usually preconditioned VIRS, VIRSAUG, and VISS reduced space and semi-smooth methods for variational inequalities ON Quasi-Newton methods like BFGS NGMRES Nonlinear GMRES NCG Nonlinear Conjugate Gradients SORQN Multiplicative Schwarz quasi-Newton GS Nonlinear Gauss-Seidel/multiplicative Schwarz sweeps FAS Full approximation scheme (nonlinear multigrid) MS Multi-stage smoothers, often used with FAS for hyperbolic problems Shell Your method, often used as a (nonlinear) preconditioner

Quasi-Newton revisited: ameliorating setup costs

► Newton-Krylov with analytic Jacobian

Lag	FunctionEval	JacobianEval	PCSetUp	PCApply		
1 bt	12	8	8	31		
1 cp	31	6	6	24		
2 bt	— diverged —					
2 cp	41	4	4	35		
3 ср	50	4	4	44		

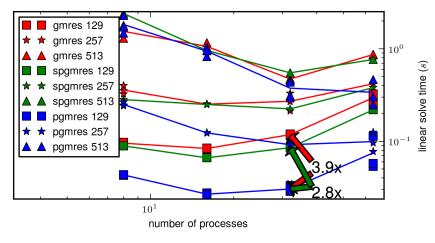
Jacobian-free Newton-Krylov with lagged preconditioner

Lag	FunctionEval	JacobianEval	PCSetUp	PCApply
1 bt	23	11	11	31
2 bt	48	4	4	36
3 bt	64	3	3	52
4 bt	87	3	3	75

Limited-memory Quasi-Newton/BFGS with lagged solve for H_0

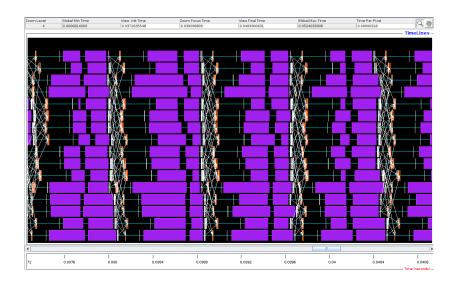
Restart	H_0	FunctionEval	JacobianEval	PCSetUp	PCApply
1 cp	10^{-5}	17	4	4	35
1 cp	preonly	21	5	5	10
3 ср	10^{-5}	21	3	3	43
3 ср	preonly	23	3	3	11
6 cp	10^{-5}	29	2	2	60
6 cp	preonly	29	2	2	14

Blocking communication is the enemy

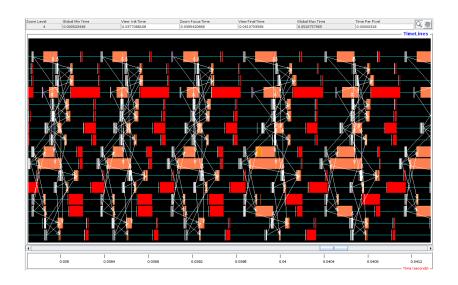


In PETSc, Block Jacobi with ILU preconditioning, -ksp_type pgmres

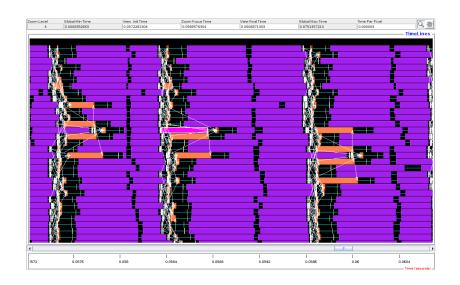
GMRES communication (16 procs)



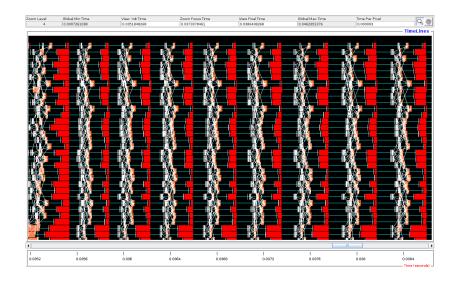
GMRES communication (32 procs)



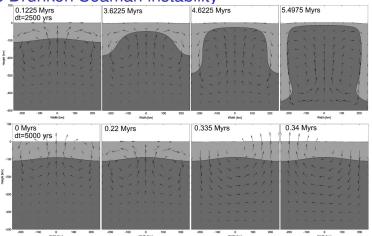
GMRES communication (32 procs)



Pipelined GMRES communication (32 procs)



The Drunken Seaman instability



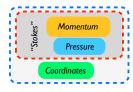
- Subduction and mantle convection with a free surface.
- Free surface critical to long-term dynamics (e.g. mountain range formation)
- Advective 0.01 CFL for stability.
- Semi-implicit helps: Kaus, Mühlhaus, and May, 2010

Stokes + Implicit Free Surface

$$\left[\eta D_{ij}(\boldsymbol{u})\right]_{,j} - p_{,i} = f_i$$

$$u_{k,k} = 0$$

$$\hat{x}_i = \hat{x}_i^{t-\Delta t} + \Delta t \, u_i(\hat{x}_i)$$



COORDINATE RESIDUALS

$$F_x := -u_i + \frac{\hat{x}_i}{\Delta t} - \frac{\hat{x}_i^{t-\Delta t}}{\Delta t}$$

[We use a full Lagrangian update of our mesh, with no remeshing]

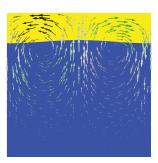
JACOBIAN

Sunday, December 4, 2011

$$\mathcal{J}_{si} = egin{bmatrix} A + \delta_{\hat{x}}A & B + \delta_{\hat{x}}B \\ B^T + \delta_{\hat{x}}B^T & 0 & J_{bc} \\ -I & 0 & \frac{I}{\Delta t} \end{bmatrix}$$
 Reuse stokes operators and saddle point preconditioners

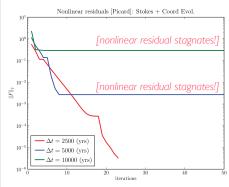
NESTED PRECONDITIONER

$$\mathcal{P}_{si} = \begin{bmatrix} \begin{bmatrix} \mathcal{P}_{s}^{l} \\ I \end{bmatrix} \begin{bmatrix} -\frac{I}{\Delta t} \end{bmatrix} \\ \mathcal{P}_{s}^{l} = \begin{bmatrix} A & 0 \\ B^{T} & -S \end{bmatrix} \end{bmatrix}$$

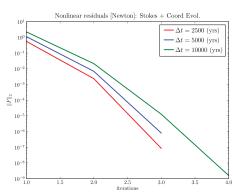


"Drunken seaman", Rayleigh Taylor instability test case from Kaus et al., 2010. Dense, viscous material (yellow) overlying less dense, less viscous material (blue).

Stokes + Implicit Free Surface

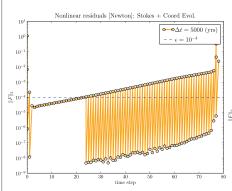


* Picard fails to converge for large time steps sizes.

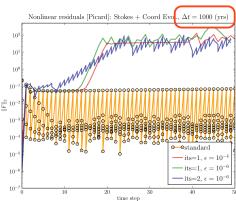


* Newton is robust for a wide range of time step sizes.

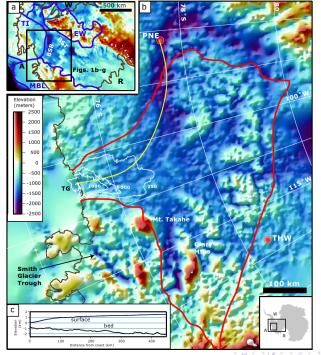
Stokes + Implicit Free Surface



- *The nonlinear residual AI WAYS increases from one step to the next.
- * A nonlinear solve is required to control the error.



* An accurate nonlinear solve on the first time step, combined with 1 or 2 nonlinear iterations on subsequent steps still results in severe errors. This is true even when dt is small.

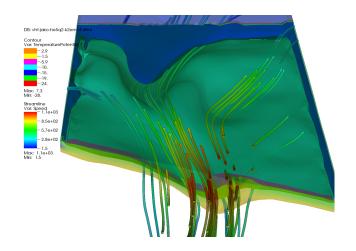


Holt et al.

2006

Bathymetry and stickyness distribution

- Bathymetry:
 - Aspect ratio $\varepsilon = [H]/[x] \ll 1$
 - ▶ Need surface and bed slopes to be small
- Stickyness distribution:
 - Limiting cases of plug flow versus vertical shear
 - Stress ratio: $\lambda = [\tau_{xz}]/[\tau_{\text{membrane}}]$
 - Discontinuous: frozen to slippery transition at ice stream margins
- Standard approach in glaciology: Taylor expand in ε and sometimes λ , drop higher order terms.
- $\lambda \gg 1$ Shallow Ice Approximation (SIA), no horizontal coupling
- $\lambda \ll 1$ Shallow Shelf Approximation (SSA), 2D elliptic solve in map-plane
 - Hydrostatic and various hybrids, 2D or 3D elliptic solves
- Bed slope is discontinuous and of order 1.
 - Taylor expansions no longer valid
 - Numerics require high resolution, subgrid parametrization, short time steps
 - Still get low quality results in the regions of most interest.
- Basal sliding parameters are discontinuous.



Polythermal ice

- Interface tracking methods (Greve's SICOPOLIS)
 - Different fields for temperate and cold ice.
 - Lagrangian or Eulerian, problems with changing topology
 - No discrete conservation
- Interface capturing
 - Enthalpy: Aschwanden, Bueler, Khroulev, Blatter (J. Glac. 2012)
 - Not in conservation form
 - Only conservative for infinitesimal melt fraction
 - Energy
 - Conserves mass, momentum, and energy for arbitrary melt fraction
 - Implicit equation of state

Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu , pressure p, and total energy density E:

$$(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta D u_i + p 1) - \rho g = 0$$

$$\rho_t + \nabla \cdot \rho u = 0$$

$$E_t + \nabla \cdot ((E + p)u - k_T \nabla T - k_\omega \nabla \omega) - \eta D u_i : D u_i - \rho u \cdot g = 0$$

- Solve for density ρ , ice velocity u_i , temperature T, and melt fraction ω using constitutive relations.
 - Simplified constitutive relations can be solved explicitly.
 - ightharpoonup Temperature, moisture, and strain-rate dependent rheology η .
 - High order FEM, typically Q₃ momentum & energy
- DAEs solved implicitly after semidiscretizing in space.
- Preconditioning using nested fieldsplit

Relative effect of the blocks

$$J = \begin{pmatrix} J_{uu} & J_{up} & J_{uE} \\ J_{pu} & 0 & 0 \\ J_{Eu} & J_{Ep} & J_{EE} \end{pmatrix}.$$

- J_{uu} Viscous/momentum terms, nearly symmetric, variable coefficients, anisotropy from Newton.
- J_{up} Weak pressure gradient, viscosity dependence on pressure (small), gravitational contribution (pressure-induced density variation). Large, nearly balanced by gravitational forcing.
- ${\it J}_{\it uE}$ Viscous dependence on energy, very nonlinear, not very large.
- $J_{pu}\,$ Divergence (mass conservation), nearly equal to $J_{up}^{T}.$
- J_{Eu} Sensitivity of energy on momentum, mostly advective transport. Large in boundary layers with large thermal/moisture gradients.
- J_{Ep} Thermal/moisture diffusion due to pressure-melting, $u \cdot \nabla$.
- J_{EE} Advection-diffusion for energy, very nonlinear at small regularization. Advection-dominated except in boundary layers and stagnant ice, often balanced in vertical.

How much nesting?

$$P_1 = \begin{pmatrix} J_{uu} & J_{up} & J_{uE} \\ 0 & B_{pp} & 0 \\ 0 & 0 & J_{EE} \end{pmatrix}$$

- \triangleright B_{pp} is a mass matrix in the pressure space weighted by inverse of kinematic viscosity.
- Elman, Mihajlović, Wathen, JCP 2011 for non-dimensional isoviscous Boussinesq.
- Works well for non-dimensional problems on the cube, not for realistic parameters.

$$P = egin{bmatrix} J_{uu} & J_{up} \ J_{pu} & 0 \ J_{Eu} & J_{Ep} \end{pmatrix} \quad J_{EE} \end{bmatrix}$$

- Inexact inner solve using upper-triangular with B_{pp} for Schur.
- Another level of nesting.
- GCR tolerant of inexact inner solves.
- Outer converges in 1 or 2 iterations.
- Low-order preconditioning full-accuracy unassembled high order operator.
- Build these on command line with PETSc PCFieldSplit.

Phase field models

State variables $u = (u_1, ..., u_N)^T$ are concentrations of different phases satisfying the inequality and sum constraints

$$u(x,t) \in G = \{ v \in \mathbb{R}^d | v_i \ge 0, \sum_{i=1}^N v_i = 1 \}, \quad \forall (x,t) \in Q.$$

Minimize free energy, reduced space active set method

$$J = \begin{pmatrix} A & 0 & 0 & -I \\ 0 & A & 0 & -I \\ 0 & 0 & A & -I \\ -I & -I & -I & 0 \end{pmatrix}, \qquad P = \begin{pmatrix} A & 0 & 0 & 0 \\ 0 & A & 0 & 0 \\ 0 & 0 & A & 0 \\ -I & -I & -I & S_{LSC} \end{pmatrix}$$

- -ksp_type fgmres -pc_type fieldsplit
- -pc_fieldsplit_detect_saddle_point
- -pc_fieldsplit_type schur
- -pc_fieldsplit_schur_precondition self
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_0_pc_type hypre
- -fieldsplit_1_ksp_type fgmres
- -fieldsplit_1_pc_type lsc

Outline

Composable Solvers

Time Integration

Implementation Efficiency

Motivation for IMEX time integration

- Explicit methods are easy and accurate, but must resolve all time scales
 - reactions, acoustics, incompressibility
- Implicit methods are robust
 - mathematically good for stiff systems
 - harder to implement, need efficient solvers
- Implicit-explicit methods are fragile and complicated
 - Severe order reduction
 - Still need implicit solvers, similar complexity to implicit

Motivation for IMEX time integration

- Explicit methods are easy and accurate, but must resolve all time scales
 - reactions, acoustics, incompressibility
- Implicit methods are robust
 - mathematically good for stiff systems
 - harder to implement, need efficient solvers
- Implicit-explicit methods are fragile and complicated
 - Severe order reduction
 - Still need implicit solvers, similar complexity to implicit
 - Why bother?

Motivation for IMEX time integration

- Explicit methods are easy and accurate, but must resolve all time scales
 - reactions, acoustics, incompressibility
- Implicit methods are robust
 - mathematically good for stiff systems
 - harder to implement, need efficient solvers
- Implicit-explicit methods are fragile and complicated
 - Severe order reduction
 - Still need implicit solvers, similar complexity to implicit
 - Very expensive non-stiff residual evaluation
 - Non-stiff components are non-smooth.
 - TVD limiters for monotone transport
 - Phase change

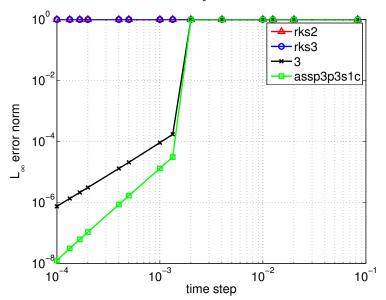
IMEX time integration in PETSc

Additive Runge-Kutta IMEX methods

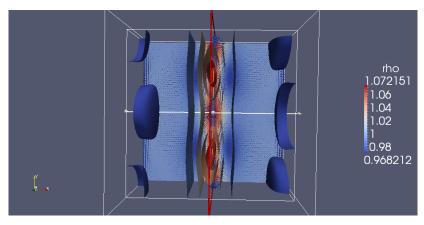
$$G(t,x,\dot{x}) = F(t,x)$$
$$J_{\alpha} = \alpha G_{\dot{x}} + G_{x}$$

- User provides:
 - FormRHSFunction(ts,t,x,F,void *ctx);
 - ▶ FormIFunction(ts,t,x, \dot{x} ,G,void *ctx);
 - ► FormIJacobian(ts,t,x, \dot{x} , α ,J, J_p ,mstr,void *ctx);
- L-stable DIRK for stiff part G
- Choice of explicit method, e.g. SSP
- Orders 2 through 5, embedded error estimates
- Dense output, hot starts for Newton
- More accurate methods if G is linear, also Rosenbrock-W
- Can use preconditioner from classical "semi-implicit" methods
- Extensible adaptive controllers, can change order within a family
- Easy to register new methods: TSARKIMEXRegister()
- Eliminate many interface quirks
- Single step interface so user can have own time loop

Stiff advection-reaction accuracy



3D Resistive MHD



Designing IMEX methods with specific stability properties, e.g. L-stable implicit, A-stable embedded, SSP explicit with optimal stability on the imaginary axis.

Outlook on Solver Composition

- Unintrusive composition of multigrid and block preconditioning
- We can build many preconditioners from the literature on the command line
- User code does not depend on matrix format, preconditioning method, nonlinear solution method, time integration method (implicit or IMEX), or size of coupled system (except for driver).

In development

- Distributive relaxation, Vanka smoothers
- Algebraic coarsening of "dual" variables
- Improving operator-dependent semi-geometric multigrid
- More automatic spectral analysis and smoother optimization
- Automated support for mixing analysis into levels

Outline

Composable Solvers

Time Integration

Implementation Efficiency

The Roadmap

Hardware trends

- ▶ More cores (keep hearing $\mathcal{O}(1000)$ per node)
- Long vector registers (already 32 bytes for AVX and BG/Q)
- Must use SMT to hide memory latency
- Must use SMT for floating point performance (GPU, BG/Q)
- Large penalty for non-contiguous memory access

"Free flops", but how can we use them?

- High order methods good: better accuracy per storage
- High order methods bad: work unit gets larger
- GPU threads have very little memory, must keep work unit small
- Need library composability, keep user contribution embarrassingly parallel

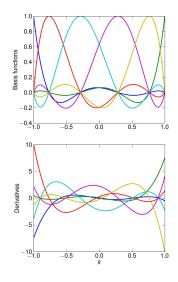
How to program this beast?

- Decouple physics from discretization
 - Expose small, embarrassingly parallel operations to user
 - Library schedules user threads for reuse between kernels
 - User provides physics in kernels run at each quadrature point
 - ▶ Continuous weak form: find $u \in \mathscr{V}_D$

$$v^T F(u) \sim \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) = 0, \quad \forall v \in \mathscr{V}_0$$

- Similar form at faces, but may involve Riemann solve
- Library manages reductions
 - Interpolation and differentiation on elements
 - Interaction with neighbors (limiting, edge stabilization)
 - Exploit tensor product structure to keep working set small
 - Assembly into solution/residual vector (sum over elements)

Nodal *hp*-version finite element methods



1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- ▶ Quadrature \hat{R} , weights \hat{W}
- Evaluation: \hat{B}, \hat{D}

3D reference element

$$\hat{W} = \hat{W} \otimes \hat{W} \otimes \hat{W}$$

$$\hat{B} = \hat{B} \otimes \hat{B} \otimes \hat{B}$$

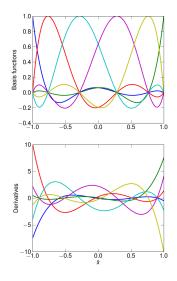
$$\hat{D}_0 = \hat{D} \otimes \hat{B} \otimes \hat{B}$$

$$\hat{D}_1 = \hat{B} \otimes \hat{D} \otimes \hat{B}$$

$$\hat{D}_2 = \hat{B} \otimes \hat{B} \otimes \hat{D}$$

These tensor product operations are very efficient, 70% of peak flop/s

Nodal *hp*-version finite element methods



1D reference element

- Lagrange interpolants on Legendre-Gauss-Lobatto points
- Quadrature \hat{R} , weights \hat{W}
- Evaluation: \hat{B}, \hat{D}

3D reference element

$$\hat{W} = \hat{W} \otimes \hat{W} \otimes \hat{W}$$

$$\hat{B} = \hat{B} \otimes \hat{B} \otimes \hat{B}$$

$$\hat{D}_{0} = \hat{D} \otimes \hat{B} \otimes \hat{B}$$

$$\hat{D}_{1} = \hat{B} \otimes \hat{D} \otimes \hat{B}$$

$$\hat{D}_{2} = \hat{B} \otimes \hat{B} \otimes \hat{D}$$

These tensor product operations are very efficient, 70% of peak flop/s

Operations on physical elements

Mapping to physical space

$$x^e: \hat{K} \to K^e, \quad J_{ij}^e = \partial x_i^e / \partial \hat{x}_j, \quad (J^e)^{-1} = \partial \hat{x} / \partial x^e$$

Element operations in physical space

$$\begin{split} B^e &= \hat{B} \qquad W^e = \hat{W} \Lambda(|J^e(r)|) \\ D^e_i &= \Lambda \left(\frac{\partial \hat{x}_0}{\partial x_i}\right) \hat{D}_0 + \Lambda \left(\frac{\partial \hat{x}_1}{\partial x_i}\right) \hat{D}_1 + \Lambda \left(\frac{\partial \hat{x}_2}{\partial x_i}\right) \hat{D}_2 \\ (D^e_i)^T &= \hat{D}_0^T \Lambda \left(\frac{\partial \hat{x}_0}{\partial x_i}\right) + \hat{D}_1^T \Lambda \left(\frac{\partial \hat{x}_1}{\partial x_i}\right) + \hat{D}_2^T \Lambda \left(\frac{\partial \hat{x}_2}{\partial x_i}\right) \end{split}$$

Global problem is defined by assembly

$$F(u) = \sum_e \mathcal{E}_e^T \left[(B^e)^T W^e \Lambda(f_0(u^e, \nabla u^e)) + \sum_{i=0}^d (D_i^e)^T W^e \Lambda(f_{1,i}(u^e, \nabla u^e)) \right] = 0$$

where
$$u^e = B^e \mathscr{E}^e u$$
 and $\nabla u^e = \{D^e_i \mathscr{E}^e u\}_{i=0}^2$

Representation of Jacobians, Automation

- For unassembled representations, decomposition, and assembly
- Continuous weak form: find u

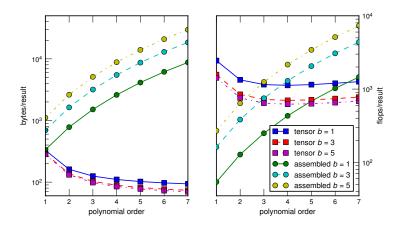
$$v^T F(u) \sim \int_{\Omega} v \cdot f_0(u, \nabla u) + \nabla v : f_1(u, \nabla u) = 0, \quad \forall v \in \mathcal{V}_0$$

• Weak form of the Jacobian J(u): find w

$$v^{T}J(u)w \sim \int_{\Omega} \begin{bmatrix} v^{T} & \nabla v^{T} \end{bmatrix} \begin{bmatrix} f_{0,0} & f_{0,1} \\ f_{1,0} & f_{1,1} \end{bmatrix} \begin{bmatrix} w \\ \nabla w \end{bmatrix}$$
$$[f_{i,j}] = \begin{bmatrix} \frac{\partial f_{0}}{\partial u} & \frac{\partial f_{0}}{\partial \nabla u} \\ \frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial \nabla u} \end{bmatrix} (u, \nabla u)$$

- ▶ Terms in $[f_{i,j}]$ easy to compute symbolically, AD more scalable.
- Nonlinear terms f_0, f_1 usually have the most expensive nonlinearities in the computation of scalar material parameters
 - Equations of state, effective viscosity, "star" region in Riemann solve
 - Compute gradient with reverse-mode, store at quadrature points.
 - Perturb scalars, then use forward-mode to complete the Jacobian.
 - Flip for action of the adjoint.

Performance of assembled versus unassembled



- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- ► Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- ▶ Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)
Sparse matrix-vector product	1/6
Dense matrix-vector product	1/4
Unassembled matrix-vector product	≈ 8
High-order residual evaluation	> 5

Processor	BW (GB/s)	Peak (GF/s)	Balanced AI (F/B)
Sandy Bridge 6-core	21*	150	7.2
Magny Cours 16-core	42*	281	6.7
Blue Gene/Q node	43	205	4.8
Tesla M2050	144	515	3.6

Finer grained parallelism for GPU FEM

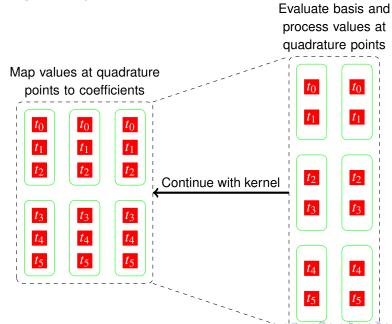
- One element per thread uses too much local memory.
- Would like to use about one quadrature point per thread.
- Tensor product requires several synchronizations

$$\tilde{u} = (A \otimes B \otimes C)u$$
$$= (A \otimes I \otimes I)(I \otimes B \otimes I)(I \otimes I \otimes C)u$$

- Accumulation easy if only one thread accumulates into a location.
- Threads within a warp are implicitly synchronized, no need for __syncthreads().
- Synchronization scope depends on approx order

Element	# quad pts	32T warps/element	TB size
Q_1	8	1/4	any
Q_2	27	1 (5T unused)	any
Q_3	64	2	64
Q_4	125	4 (3T unused)	128

Finer grained parallelism for GPUs, low order



On preconditioning and multigrid

- Often using assembled matrices for preconditioning
- Prefer matrix-free preconditioners for high hardware utilization
- Geometric h- and p-multigrid, could be FAS
- Smoothers build/solve with small dense matrices
 - "point" matrices: can use single threads
 - "element" matrices: need to cooperate within thread blocks
 - I want a dense linear algebra library to be called collectively within a thread block
- Multiplicative (Gauss-Seidel) is algorithmically nice
- Spectral analysis for polynomial/multi-stage smoothers
- Coarser levels better to do on CPU
 - Potential for additive correction to run concurrently

Outlook

- Sparse matrix assembly (for preconditioning)
 - > 100 GF/s for lowest order Stokes (Matt Knepley)
 - common "pointwise" physics code with CPU implementation
 - lacktriangle Dohp CPU version faster than libMesh and Deal.II for Q_1
 - Q₁ assembly embedded in higher order is 8% slower than hand-rolled
- Matrix-free tensor-product versions reliably get about 70% of peak flops
- Finer grained parallelism in GPU tensor product kernels
- Can't wait for OpenCL to implement indirect function calls
- Symbolic differentiation too slow, tired of hand-differentiation
 - I want source-transformation AD with indirect function calls
- Find correct amount of reuse between face and cell integration
- Riemann solves harder to vectorize
- Hide dispatch to pointwise kernels inside library
 - Easy, but scary. Library/framework becomes Framework.
 - Interoperbility of user-rolled, library-provided, and generated traversal code.

- Maximize science per Watt
- Huge scope remains at problem formulation
- Raise level of abstraction at which a problem is formally specified
- Algorithmic optimality is crucial