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Bathymetry and stickyness distribution
I Bathymetry:

I Aspect ratio ε = [H]/[x]� 1
I Need surface and bed slopes to be small

I Stickyness distribution:
I Limiting cases of plug flow versus vertical shear
I Stress ratio: λ = [τxz]/[τmembrane]
I Discontinuous: frozen to slippery transition at ice stream margins

I Standard approach in glaciology:
Taylor expand in ε and sometimes λ , drop higher order terms.

λ � 1 Shallow Ice Approximation (SIA), no horizontal coupling
λ � 1 Shallow Shelf Approximation (SSA), 2D elliptic solve in map-plane

I Hydrostatic and various hybrids, 2D or 3D elliptic solves
I Bed slope is discontinuous and of order 1.

I Taylor expansions no longer valid
I Numerics require high resolution, subgrid parametrization, short time

steps
I Still get low quality results in the regions of most interest.

I Basal sliding parameters are discontinuous.





Polythermal ice

I Interface tracking methods (e.g. Greve’s SICOPOLIS)
I Different fields for temperate and cold ice.
I Lagrangian or Eulerian, problems with changing topology
I No discrete conservation

I Interface capturing
I Enthalpy: Aschwanden, Bueler, Khroulev, Blatter (J. Glac.

2012/PISM)
I Not in conservation form
I Only conservative for infinitesimal melt fraction

I Energy
I Conserves mass, momentum, and energy for arbitrary melt fraction
I Implicit equation of state



Conservative (non-Boussinesq) two-phase ice flow

Find momentum density ρu, pressure p, and total energy density E:

(ρu)t +∇·(ρu⊗u−ηDui +p1)−ρg = 0

ρt +∇·ρu = 0

Et +∇·
(
(E+p)u− kT∇T− kω∇ω

)
−ηDui :Dui−ρu ·g = 0

I Solve for density ρ , ice velocity ui, temperature T , and melt
fraction ω using constitutive relations.

I Simplified constitutive relations can be solved explicitly.
I Temperature, moisture, and strain-rate dependent rheology η .
I High order FEM, typically Q3 momentum & energy

I DAEs solved implicitly after semidiscretizing in space.

I Preconditioning using nested fieldsplit

I Thermomechanical steady state in about 10 nonlinear iterations
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Why care about conforming and non-smoothness?

I Subshelf ocean circulation is physically richer and more difficult to
solve than ice flow

I Heat transfer is sensitive to boundary layer processes with
thickness < 1m, Re∼ 106

I Countless engineering studies: wall modeling is limited, significant
normal resolution still necessary

I Unaligned interface anisotropy is bad for Eulerian AMR methods
I We care about high-dimensional sensitivity analysis and inversion

I Forward model evaluations alone are an inefficient way to explore
a high-dimensional space

I Each source of model non-smoothness requires a lot of analysis
to use adjoint methods

I Conforming moving mesh methods eliminate all but “essential”
non-smoothness (like contact)



Mesh motion via Inverse Beltrami formulation

I nonlinear elliptic (or parabolic) equation for mesh location

I prescribe resolution and anisotropy using target metric tensor

I efficient solution using Newton-Krylov multigrid or nonlinear
multigrid

I conservative slip boundary conditions at most surfaces

I ALE transport scheme corrected to satisfy geometric
conservation law



Transport

Theorem (Godunov 1954)
Non-oscillatory linear spatial discretizations for transport are at most
first order accurate.

I First order accurate discretizations have unacceptably high
numerical diffusion

I Discretization choices:
I Limited or reconstructed finite volume or finite difference

I Second order TVD limiters have corners
I Weighted Essential Non-Oscillatory (WENO) smooth, but very

nonlinear
I Central or upwind
I Inconvenient for unstructured grids

I Nonlinearly stabilized continuous finite element
I Currently used, but fragile and messy

I Discontinuous Galerkin
I Cell-wise entropy stability without limiters
I Improved robustness with smooth limiters
I Transitioning to this



Joke
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Why do we need multilevel solvers?
I Elliptic problems are globally coupled

I Without a coarse level, number of iterations proportional to
inverse mesh size

I High-volume local communication is an inefficient way to
communicate long-range information, bad for parallel models

I Most important with 3D flow features and/or slippery beds
I Nested/split multilevel methods

I Decompose problem into simpler sub-problems, use multilevel
methods on each

I Good reuse of existing software
I More synchronization due to nesting, more suitable after

linearization
I Monolithic/coupled multilevel methods

I Better convergence and lower synchronization, but harder to get
right

I Internal nonlinearities resolved locally
I More discretization-specific, less software reuse



Relative effect of the blocks

J =

Juu Jup JuE

Jpu 0 0
JEu JEp JEE

 .

Juu Viscous/momentum terms, nearly symmetric, variable
coefficionts, anisotropy from Newton.

Jup Weak pressure gradient, viscosity dependence on pressure
(small), gravitational contribution (pressure-induced density
variation). Large, nearly balanced by gravitational forcing.

JuE Viscous dependence on energy, very nonlinear, not very large.
Jpu Divergence (mass conservation), nearly equal to JT

up.
JEu Sensitivity of energy on momentum, mostly advective transport.

Large in boundary layers with large thermal/moisture gradients.
JEp Thermal/moisture diffusion due to pressure-melting, u ·∇.
JEE Advection-diffusion for energy, very nonlinear at small

regularization. Advection-dominated except in boundary layers
and stagnant ice, often balanced in vertical.



How much nesting?

P1 =

Juu Jup JuE

0 Bpp 0
0 0 JEE


I Bpp is a mass matrix in the

pressure space weighted by
inverse of kinematic viscosity.

I Elman, Mihajlović, Wathen,
JCP 2011 for non-dimensional
isoviscous Boussinesq.

I Works well for
non-dimensional problems on
the cube, not for realistic
parameters.

P =

(Juu Jup

Jpu 0

)
(
JEu JEp

)
JEE


I Inexact inner solve using

upper-triangular with Bpp for
Schur.

I Another level of nesting.

I GCR tolerant of inexact inner
solves.

I Outer converges in 1 or 2
iterations.

I Low-order preconditioning full-accuracy unassembled high order
operator.

I Build these on command line with PETSc PCFieldSplit.



Full Approximation Scheme

ũh← Sh
preuh

0 pre-smooth

LHuH = IH
h f h +LH ÎH

h ũh− IH
h Lhũh︸ ︷︷ ︸

τH
h

solve coarse problem for uH

uh← Sh
post

[
ũh + Ih

H(u
H− ÎH

h ũh)
]

apply correction and post-smooth

I Nonlinearities from spatial discretization fixed locally

I No assembled matrices so better floating point utilization, less
memory

I Makes progress on all physical components at once

I FD and DG good, less efficient for continuous finite element
methods

I Influence of surface evolution is low rank, no need to visit finest
level on each iteration



Outlook

I Basal hydrology model
I Need mesh-independent statistics
I Numerical homogenization?

I True inverse and sensitivity support, but need to invert for the
right thing

I Dynamic remeshing after large topology changes

I Finish FAS multigrid for full coupled system including geometry
I User-friendliness of process

I Currently using georeferenced initial/boundary data via GDAL
I But meshing process is not fully automatic
I Better: multiresolution database (Mark Fahnestock)


	Conservative models
	Conforming boundaries and model non-smoothness
	Multilevel Solvers

