Multilevel Stokes flow solvers Adapting to heterogeneity and rheology

Jed Brown

Mathematics and Computer Science Division, Argonne National Laboratory

CIG Mantle/Lithosphere 2012-07-30

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

Intent of this talk

- \triangleright observation: solver scalability is the bottleneck at scale
- \blacktriangleright "black box" solvers are not sustainable
	- \triangleright optimal solvers must accurately handle all scales
	- \triangleright optimality is crucial for large-scale problems
	- \blacktriangleright hardware puts up a spirited fight to abstraction
- \blacktriangleright introduce multilevel solver concepts
- \triangleright outline ingredients that discretizations can provide to solvers
- \blacktriangleright discuss algorithmic trade-offs
- \triangleright current state of solver software and what we are working on

KORKARYKERKE POLO

Outline

[Introduction](#page-3-0)

[Multiscale Toolbox](#page-8-0)

[Coarse grids](#page-10-0) [Smoothing](#page-16-0)

[Software and performance](#page-21-0)

[Coupling software](#page-22-0) [Performance considerations](#page-31-0)

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

Outline

[Introduction](#page-3-0)

[Multiscale Toolbox](#page-8-0)

[Coarse grids](#page-10-0) [Smoothing](#page-16-0)

[Software and performance](#page-21-0)

[Coupling software](#page-22-0) [Performance considerations](#page-31-0)

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

It's *all* about algorithms (at the petascale)

Given, for example:

- a "physics" phase that scales as $O(N)$
- a "solver" phase that scales as $O(N^{3/2})$
- computation is almost all solver after several doublings
- **Most applications groups** have not vet "felt" this curve in their gut
	- as users actually get into queues with more than 4K processors, this will change

Weak scaling limit, assuming efficiency of 100% in both physics and solver phases

(c/o David Keyes)

Challenges for elliptic solvers

 \triangleright multiscale material coefficients

 \triangleright long, thin high viscosity: transmit stresses long distances

- \blacktriangleright "jelly sandwich": release long-range stresses locally
- \blacktriangleright nonlinearity
	- \blacktriangleright plasticity: creates "jelly sandwich"
	- \blacktriangleright Newton linearization produces local anisotropy
	- \blacktriangleright heating: localization
	- \triangleright coupling to other physical processes
- \blacktriangleright multilevel methods
	- \blacktriangleright need accurate coarse grids
	- \blacktriangleright need effective smoothers

Multigrid separates scales, feedback between scales

The Great Solver Schism: Monolithic or Split?

Monolithic

- \blacktriangleright Direct solvers
- \blacktriangleright Coupled Schwarz
- ▶ Coupled Neumann-Neumann (need unassembled matrices)
- \blacktriangleright Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- \blacktriangleright Physics-split Schwarz (based on relaxation)
- \blacktriangleright Physics-split Schur (based on factorization)
	- \blacktriangleright approximate commutators SIMPLE, PCD, LSC
	- \blacktriangleright segregated smoothers
	- \blacktriangleright Augmented Lagrangian
	- \blacktriangleright "parabolization" for stiff waves

KORKARYKERKE POLO

- X Need to understand global coupling strengths
- \blacktriangleright Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

Outline

[Introduction](#page-3-0)

[Multiscale Toolbox](#page-8-0)

[Coarse grids](#page-10-0) [Smoothing](#page-16-0)

[Software and performance](#page-21-0)

[Coupling software](#page-22-0) [Performance considerations](#page-31-0)

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 10 Q Q Q

Three schools of thought

- \blacktriangleright Multigrid (Brandt, Hackbusch, ...)
	- \triangleright originally for resolved/asymptotic spatial discretizations
	- \triangleright textbook: reach discretization error in one F-cycle
	- \blacktriangleright matrix-light/free, good for bandwidth
	- \triangleright FAS well-developed for nonlinear problems
- \triangleright Multilevel Domain Decomposition (Mandel, Dohrmann, Widlund)
	- \blacktriangleright leverage direct subdomain solvers, minimize communication
	- \blacktriangleright rapid coarsening $\kappa(P^{-1}A) \sim \left(1+\log\frac{H}{h}\right)^{2(L-1)}$
	- \triangleright often formulated only as two-level methods
	- \blacktriangleright typically with domain-conforming coefficients
	- \blacktriangleright lightly developed for nonlinear (e.g. ASPIN [Cai and Keyes])

- \blacktriangleright Multiscale Finite Elements (Babuska, Arbogast, ...)
	- \triangleright local preprocessing to construct coarse space
	- \blacktriangleright rarely/never revisit fine space
	- \triangleright mostly restricted to linear problems

Computable Convergence Measures

- **Prolongation** $P: V_{\text{coarse}} \to V_{\text{fine}}$
- **•** Restriction $R: V_{\text{fine}} \rightarrow V_{\text{coarse}}$
- $I PR : V_{\text{fine}} \rightarrow V_{\text{fine}}$ removes part of vector visible in coarse space
- **Error iteration matrix** $I M^{-1}A$ **, worst-case convergence factor is** λ_{max}
- \triangleright "Interpolation must be able to approximate an eigenvector with error bound proportional to the size of the associated eigenvalue."

$$
\sim \max_{x} ||x||_{(I-PR)S(I-PR)}/||x||_{A}
$$

 \triangleright What can we do before we have prolongation P ?

Compatible Relaxation

[Livne 2004]

- \blacktriangleright Apply smoother subject to constraint $\hat{R}x = 0$
	- 1. $\tilde{x}_n = x_{n-1} + S_A^{-1}(r(x_{n-1}))$ 2. $x_n = \tilde{x}_n + S_R^{-1}(\hat{R}\tilde{x}_n)$
- \blacktriangleright Method to determine when coarse space is rich enough
- \blacktriangleright Slow to relax points/regions good candidates for coarse points/aggregates
- \blacktriangleright If subdomain solves used for smoothing, only interfaces are candidates

(ロ) (何) (ヨ) (ヨ)

 2990

Coarse basis functions

- \blacktriangleright $||PRx||_A + ||(I PR)x||_A \leq C ||x||_A$
- \blacktriangleright "decompose any x into parts without increasing energy much"
- \triangleright near-null spaces must be represented exactly (partition of unity)
- \blacktriangleright number of rows of *R* determined already, usually $P = R^T$
- \triangleright energy minimization with specified support [Wan, Chan, Smith; Mandel, Brezina, Vanek]

A O A G A 4 O A C A G A 4 O A 4 O A C A

- ► smoothed aggregation: $P_{\text{smooth}} = (I \omega D^{-1}A)P_{\text{agg}}$
- \triangleright classical AMG: each fine point processed independently
- \triangleright domain decomposition/multiscale FEM: solve subdomain problems

Example: BDDC/FETI-DP coarse basis function

- \triangleright only low-order continuity between subdomains
- \triangleright corrected by more technical subdomain smoother

イロトメ 御 トメ きょくきょ

 299

÷

[Mandel and Sousedik 2010]

Why I like subdomain problems

[Arbogast 2011]

- \blacktriangleright subassembly avoids explicit matrix triple product $A_\mathrm{coarse} \leftarrow P^T A_\mathrm{fine} P$
- \triangleright can update the coarse operator locally (e.g. local nonlinearity)
- \blacktriangleright need not assemble entire fine grid operator
- \triangleright can coarsen very rapidly (at least in smooth regions)

KORK STRAIN A STRAIN A STRAIN

lower communication setup phase

Complication for saddle point problems

$$
\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}
$$

- \triangleright want uniform stability for coarse problem
	- \triangleright respect inf-sup condition, similar to fine grid
- \blacktriangleright want exact representation of volumetric mode
	- \blacktriangleright i.e. we can't cheat on conservation while upscaling
- \triangleright to be rigorous, we need to evaluate face integrals
	- \triangleright self-similar coarse discretizations are attractive
- \triangleright heuristic algebraic coarsening also possible [Adams 2004]

KORKARYKERKE POLO

Nonlinear problems

- \blacktriangleright matrix-based smoothers require global linearization
- \triangleright nonlinearity often more efficiently resolved locally
- \blacktriangleright nonlinear additive or multiplicative Schwarz
- \triangleright nonlinear/matrix-free is good if

 $C = \frac{(\text{cost to evaluate residual at one point}) \cdot N}{(\text{cost of global residue})} \sim 1$ (cost of global residual)

- \blacktriangleright finite difference: $C < 2$
- \triangleright finite volume: $C \sim 2$, depends on reconstruction
- **Finite element:** *C* ∼ number of vertices per cell
- \blacktriangleright larger block smoothers help reduce C

Smoothing for saddle point systems

$$
\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}
$$

KORKARYKERKE POLO

- \triangleright pressure has no self-coupling
- \triangleright pressure error modes not spectrally separated
- \blacktriangleright approaches
	- \blacktriangleright block smoothers (Vanka)
	- \triangleright splitting with approximate Schur complement
	- \blacktriangleright amplify fine-grid modes

Vanka block smoothers

- \triangleright solve pressure-centered cell problems (better for discontinuous pressure)
- ^I robust convergence factor ∼ 0.3 *if* coarse grids are accurate
- ^I 1D energy minimizing interpolants easy and effective
- can use assembled sparse matrices, but more efficient without

Changing Associativity: Distributive Smoothing

$$
PAx = Pb \qquad \qquad APy = b, \quad x = Py
$$

- \triangleright Normal Preconditioning: make *PA* or *AP* well-conditioned
- \blacktriangleright Alternative: amplify high-frequency modes
	- \blacktriangleright Multigrid smoothers only need to relax high-frequency modes
	- \blacktriangleright Easier to do when spectrally separated: *h*-ellipticity
		- \triangleright pointwise smoothers (Gauss-Seidel) and polynomial/multistage methods
	- \triangleright Mechanics: form the product *PA* or *AP* and apply "normal" method
	- \blacktriangleright Example (Stokes)

$$
A \sim \begin{pmatrix} -\nabla^2 & \nabla \\ \nabla \cdot & 0 \end{pmatrix} \quad P \sim \begin{pmatrix} 1 & -\nabla \\ 0 & -\nabla^2 \end{pmatrix} \quad AP \sim \begin{pmatrix} -\nabla^2 & \text{``0''} \\ \nabla \cdot & -\nabla^2 \end{pmatrix}
$$

Convergence factor 0.32 (as good as Laplace) for smooth problems**K ロ K K (日 K K B K X B K H X K K K B K D K C K**

Coupled MG for Stokes, split smoothers

$$
J = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}
$$

$$
P_{\text{smooth}} = \begin{pmatrix} A_{\text{SOR}} & 0 \\ B & M \end{pmatrix}
$$

イロトメ 御 トメ 君 トメ 君 トッ 君

 2990

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_block_size 3 -mg_levels_pc_fieldsplit_0_fields 0,1 -mg_levels_pc_fieldsplit_1_fields 2 -mg_levels_fieldsplit_0_pc_type sor

Outline

[Introduction](#page-3-0)

[Multiscale Toolbox](#page-8-0)

[Coarse grids](#page-10-0) [Smoothing](#page-16-0)

[Software and performance](#page-21-0)

[Coupling software](#page-22-0) [Performance considerations](#page-31-0)

K ロ X (日 X X 원 X X 원 X 원 X 원 X Q Q Q

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \triangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

Momentum Stokes Pressure

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \triangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \triangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \blacktriangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

Boundary Layer

Ocean

- \blacktriangleright package each "physics" independently
- \triangleright solve single-physics and coupled problems
- \blacktriangleright semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- \blacktriangleright use the best possible matrix format for each physics (e.g. symmetric block size 3)

- \blacktriangleright matrix-free anywhere
- multiple levels of nesting

Splitting for Multiphysics

$$
\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}
$$

 \blacktriangleright Relaxation: -pc_fieldsplit_type [additive,multiplicative,symmetric_multiplicative] *A D* $\begin{bmatrix} A & D \ C & D \end{bmatrix}^{-1} \qquad \begin{bmatrix} A & A \ C & D \end{bmatrix}$ 1 1^{-1} $($ $1-\begin{bmatrix} A & B \\ 1 & A \end{bmatrix}$ 1 $\left[\begin{bmatrix} A & D \ C & D \end{bmatrix}^{-1}\right]$

 \triangleright Gauss-Seidel inspired, works when fields are loosely coupled ▶ Factorization: -pc_fieldsplit_type schur

$$
\begin{bmatrix} A & B \\ & S \end{bmatrix}^{-1} \begin{bmatrix} 1 & 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B
$$

- \triangleright robust (exact factorization), can often drop lower block
- \triangleright how to precondition *S* which is usually dense?
	- \blacktriangleright \blacktriangleright \blacktriangleright interpret as differential operators, use a[pp](#page-26-0)r[oxi](#page-28-0)[m](#page-31-0)[at](#page-27-0)[e](#page-28-0) c[o](#page-22-0)mm[u](#page-20-0)[ta](#page-21-0)[tor](#page-33-0)[s](#page-0-0)

 000

Work in Split Local space, matrix data structures reside in any space.

Multiphysics Assembly Code: Jacobians

```
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {
// Access components as for residuals
MatGetLocalSubMatrix(B,is[0],is[0], &Buu);
MatGetLocalSubMatrix(B,is[0],is[1],&Buk);
MatGetLocalSubMatrix(B,is[1],is[0], &Bku);
MatGetLocalSubMatrix(B,is[1],is[1], &Bkk);
FormJacobianLocal_U(user, &infou,u,k, Buu); \frac{1}{s} // single physics
FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
FormJacobianLocal_KU(user, &infou, &infok,u,k, Bku); // coupling
FormJacobianLocal_K(user, &infok,u,k, Bkk); \frac{1}{s} // single physics
MatRestoreLocalSubMatrix(B,is[0],is[0], &Buu);
// More restores
```
- \triangleright Assembly code is independent of matrix format
- \triangleright Single-physics code is used unmodified for coupled problem
- \blacktriangleright No-copy fieldsplit:

-pack_dm_mat_type nest -pc_type fieldsplit

 \blacktriangleright Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_facto[r_m](#page-28-0)[at_](#page-30-0)[s](#page-28-0)[ol](#page-29-0)[v](#page-30-0)[er](#page-21-0)[_](#page-22-0)[p](#page-30-0)[a](#page-21-0)[ck](#page-20-0)a[ge](#page-33-0) [mu](#page-0-0)[mps](#page-33-0)
 \Box

Quasi-Newton revisited: ameliorating setup costs

 \blacktriangleright Newton-Krylov with analytic Jacobian

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV [ban](#page-30-0)[dw](#page-32-0)[i](#page-30-0)[dth](#page-31-0)[w](#page-30-0)[a](#page-31-0)[ll](#page-33-0) $<$ [4](#page-21-0)[%](#page-33-0)

Coarse levels may not be cheaper than fine levels

[Gahvari, Schulz, Yang, Jordan, Gropp 2011]

- latency for longer-range communication outweighs smaller data
- very aggressive coarsening important to limit number of levels

 QQ

alternatives: additive multigrid, redundant [co](#page-31-0)[ars](#page-33-0)[e](#page-31-0) [g](#page-32-0)[ri](#page-33-0)[d](#page-30-0)[s](#page-31-0) 医骨盆 医骨盆

Multilevel Solvers are a *Way of Life*

- \triangleright ingredients that discretizations can provide
	- \blacktriangleright identify "fields"
	- \triangleright topological coarsening, possibly for fields
	- \blacktriangleright near-null space information
	- \blacktriangleright "natural" subdomains
	- \blacktriangleright subdomain integration, face integration
	- \blacktriangleright element or subdomain assembly/matrix-free smoothing
- \blacktriangleright solver composition
	- \triangleright most splitting methods accessible from command line
	- \triangleright energy optimization for tentative coarse basis functions
	- \blacktriangleright algebraic form of distributive relaxation
	- \triangleright generic assembly for large systems and components
	- \triangleright working on flexibile "library-assisted" nonlinear multigrid
	- \triangleright adding support for interactive eigenanalysis