
Multilevel Stokes flow solvers
Adapting to heterogeneity and rheology

Jed Brown

Mathematics and Computer Science Division, Argonne National Laboratory

CIG Mantle/Lithosphere 2012-07-30

Intent of this talk

I observation: solver scalability is the bottleneck at scale
I “black box” solvers are not sustainable

I optimal solvers must accurately handle all scales
I optimality is crucial for large-scale problems
I hardware puts up a spirited fight to abstraction

I introduce multilevel solver concepts

I outline ingredients that discretizations can provide to solvers

I discuss algorithmic trade-offs

I current state of solver software and what we are working on

Outline

Introduction

Multiscale Toolbox
Coarse grids
Smoothing

Software and performance
Coupling software
Performance considerations

Outline

Introduction

Multiscale Toolbox
Coarse grids
Smoothing

Software and performance
Coupling software
Performance considerations

Challenges for elliptic solvers

I multiscale material coefficients
I long, thin high viscosity: transmit stresses long distances
I “jelly sandwich”: release long-range stresses locally

I nonlinearity
I plasticity: creates “jelly sandwich”
I Newton linearization produces local anisotropy
I heating: localization
I coupling to other physical processes

I multilevel methods
I need accurate coarse grids
I need effective smoothers

Multigrid separates scales, feedback between scales

The Great Solver Schism: Monolithic or Split?

Monolithic

I Direct solvers

I Coupled Schwarz

I Coupled Neumann-Neumann
(need unassembled matrices)

I Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

I Physics-split Schwarz
(based on relaxation)

I Physics-split Schur
(based on factorization)

I approximate commutators
SIMPLE, PCD, LSC

I segregated smoothers
I Augmented Lagrangian
I “parabolization” for stiff

waves

X Need to understand global
coupling strengths

I Preferred data structures depend on which method is used.

I Interplay with geometric multigrid.

Outline

Introduction

Multiscale Toolbox
Coarse grids
Smoothing

Software and performance
Coupling software
Performance considerations

Three schools of thought

I Multigrid (Brandt, Hackbusch, . . .)
I originally for resolved/asymptotic spatial discretizations
I textbook: reach discretization error in one F-cycle
I matrix-light/free, good for bandwidth
I FAS well-developed for nonlinear problems

I Multilevel Domain Decomposition (Mandel, Dohrmann, Widlund)
I leverage direct subdomain solvers, minimize communication
I rapid coarsening κ(P−1A)∼

(
1+ log H

h

)2(L−1)

I often formulated only as two-level methods
I typically with domain-conforming coefficients
I lightly developed for nonlinear (e.g. ASPIN [Cai and Keyes])

I Multiscale Finite Elements (Babuska, Arbogast, . . .)
I local preprocessing to construct coarse space
I rarely/never revisit fine space
I mostly restricted to linear problems

Computable Convergence Measures

I Prolongation P : Vcoarse→ Vfine

I Restriction R : Vfine→ Vcoarse

I I−PR : Vfine→ Vfine removes part of vector visible in coarse
space

I Error iteration matrix I−M−1A, worst-case convergence factor is
λmax

I “Interpolation must be able to approximate an eigenvector with
error bound proportional to the size of the associated eigenvalue.”

I maxx ‖x‖(I−PR)S(I−PR) /‖x‖A

I What can we do before we have prolongation P?

Compatible Relaxation

[Livne 2004]

I Apply smoother subject to
constraint R̂x = 0

1. x̃n = xn−1 +S−1
A

(
r(xn−1)

)
2. xn = x̃n +S−1

R
(
R̂x̃n)

)
I Method to determine when

coarse space is rich enough

I Slow to relax points/regions
good candidates for coarse
points/aggregates

I If subdomain solves used for
smoothing, only interfaces are
candidates

Coarse basis functions

I ‖PRx‖A +‖(I−PR)x‖A ≤ C‖x‖A

I “decompose any x into parts without increasing energy much”

I near-null spaces must be represented exactly (partition of unity)

I number of rows of R determined already, usually P = RT

I energy minimization with specified support [Wan, Chan, Smith;
Mandel, Brezina, Vanek]

I smoothed aggregation: Psmooth = (I−ωD−1A)Pagg

I classical AMG: each fine point processed independently

I domain decomposition/multiscale FEM: solve subdomain
problems

Example: BDDC/FETI-DP coarse basis function

[Mandel and Sousedik 2010]

I only low-order
continuity between
subdomains

I corrected by more
technical subdomain
smoother

Why I like subdomain problems

[Arbogast 2011]

I subassembly avoids explicit matrix
triple product Acoarse← PTAfineP

I can update the coarse operator
locally (e.g. local nonlinearity)

I need not assemble entire fine grid
operator

I can coarsen very rapidly (at least in
smooth regions)

I lower communication setup phase

Complication for saddle point problems

(
A BT

B 0

)
I want uniform stability for coarse problem

I respect inf-sup condition, similar to fine grid
I want exact representation of volumetric mode

I i.e. we can’t cheat on conservation while upscaling
I to be rigorous, we need to evaluate face integrals

I self-similar coarse discretizations are attractive

I heuristic algebraic coarsening also possible [Adams 2004]

Nonlinear problems

I matrix-based smoothers require global linearization

I nonlinearity often more efficiently resolved locally

I nonlinear additive or multiplicative Schwarz

I nonlinear/matrix-free is good if

C =
(cost to evaluate residual at one point) ·N

(cost of global residual)
∼ 1

I finite difference: C < 2
I finite volume: C ∼ 2, depends on reconstruction
I finite element: C ∼ number of vertices per cell

I larger block smoothers help reduce C

Smoothing for saddle point systems

(
A BT

B 0

)
I pressure has no self-coupling

I pressure error modes not spectrally separated
I approaches

I block smoothers (Vanka)
I splitting with approximate Schur complement
I amplify fine-grid modes

Vanka block smoothers

I solve pressure-centered cell problems
(better for discontinuous pressure)

I robust convergence factor ∼ 0.3 if coarse grids are accurate

I 1D energy minimizing interpolants easy and effective

I can use assembled sparse matrices, but more efficient without

Changing Associativity: Distributive Smoothing

PAx = Pb APy = b, x = Py

I Normal Preconditioning: make PA or AP well-conditioned
I Alternative: amplify high-frequency modes

I Multigrid smoothers only need to relax high-frequency modes
I Easier to do when spectrally separated: h-ellipticity

I pointwise smoothers (Gauss-Seidel) and polynomial/multistage
methods

I Mechanics: form the product PA or AP and apply “normal” method
I Example (Stokes)

A∼
(
−∇2 ∇

∇· 0

)
P∼

(
1 −∇

0 −∇2

)
AP∼

(
−∇2 “0”
∇· −∇2

)
I Convergence factor 0.32 (as good as Laplace) for smooth

problems

Coupled MG for Stokes, split smoothers

J =

(
A BT

B C

)
Psmooth =

(
ASOR 0

B M

)

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_block_size 3
-mg_levels_pc_fieldsplit_0_fields 0,1
-mg_levels_pc_fieldsplit_1_fields 2
-mg_levels_fieldsplit_0_pc_type sor

Outline

Introduction

Multiscale Toolbox
Coarse grids
Smoothing

Software and performance
Coupling software
Performance considerations

Multi-physics coupling in PETSc

Momentum Pressure

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting

Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
I Relaxation: -pc_fieldsplit_type

[additive,multiplicative,symmetric_multiplicative][
A

D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

I Gauss-Seidel inspired, works when fields are loosely coupled
I Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[1
CA−1 1

]−1

, S = D−CA−1B

I robust (exact factorization), can often drop lower block
I how to precondition S which is usually dense?

I interpret as differential operators, use approximate commutators

rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Work in Split Local space, matrix data structures reside in any space.

Multiphysics Assembly Code: Jacobians
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {

// Access components as for residuals
MatGetLocalSubMatrix(B,is[0],is[0],&Buu);
MatGetLocalSubMatrix(B,is[0],is[1],&Buk);
MatGetLocalSubMatrix(B,is[1],is[0],&Bku);
MatGetLocalSubMatrix(B,is[1],is[1],&Bkk);
FormJacobianLocal_U(user,&infou,u,k,Buu); // single physics
FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
FormJacobianLocal_KU(user,&infou,&infok,u,k,Bku); // coupling
FormJacobianLocal_K(user,&infok,u,k,Bkk); // single physics
MatRestoreLocalSubMatrix(B,is[0],is[0],&Buu);
// More restores

I Assembly code is independent of matrix format
I Single-physics code is used unmodified for coupled problem
I No-copy fieldsplit:

-pack_dm_mat_type nest -pc_type fieldsplit
I Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps

Quasi-Newton revisited: ameliorating setup costs
I Newton-Krylov with analytic Jacobian

Lag FunctionEval JacobianEval PCSetUp PCApply

1 bt 12 8 8 31
1 cp 31 6 6 24
2 bt — diverged —
2 cp 41 4 4 35
3 cp 50 4 4 44

I Jacobian-free Newton-Krylov with lagged preconditioner
Lag FunctionEval JacobianEval PCSetUp PCApply

1 bt 23 11 11 31
2 bt 48 4 4 36
3 bt 64 3 3 52
4 bt 87 3 3 75

I Limited-memory Quasi-Newton/BFGS with lagged solve for H0

Restart H0 FunctionEval JacobianEval PCSetUp PCApply

1 cp 10−5 17 4 4 35
1 cp preonly 21 5 5 10
3 cp 10−5 21 3 3 43
3 cp preonly 23 3 3 11
6 cp 10−5 29 2 2 60
6 cp preonly 29 2 2 14

pseudo-plastic
rheology
-snes_type qn

-snes_qn_scale_type

jacobian

Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%

Coarse levels may not be cheaper than fine levels

[Gahvari, Schulz, Yang, Jordan, Gropp 2011]

I latency for longer-range communication outweighs smaller data
I very aggressive coarsening important to limit number of levels
I alternatives: additive multigrid, redundant coarse grids

Multilevel Solvers are a Way of Life

I ingredients that discretizations can provide
I identify “fields”
I topological coarsening, possibly for fields
I near-null space information
I “natural” subdomains
I subdomain integration, face integration
I element or subdomain assembly/matrix-free smoothing

I solver composition
I most splitting methods accessible from command line
I energy optimization for tentative coarse basis functions
I algebraic form of distributive relaxation
I generic assembly for large systems and components
I working on flexibile “library-assisted” nonlinear multigrid
I adding support for interactive eigenanalysis

	Introduction
	Multiscale Toolbox
	Coarse grids
	Smoothing

	Software and performance
	Coupling software
	Performance considerations

