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Intent of this talk

I observation: solver scalability is the bottleneck at scale
I “black box” solvers are not sustainable

I optimal solvers must accurately handle all scales
I optimality is crucial for large-scale problems
I hardware puts up a spirited fight to abstraction

I introduce multilevel solver concepts

I outline ingredients that discretizations can provide to solvers

I discuss algorithmic trade-offs

I current state of solver software and what we are working on
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Challenges for elliptic solvers

I multiscale material coefficients
I long, thin high viscosity: transmit stresses long distances
I “jelly sandwich”: release long-range stresses locally

I nonlinearity
I plasticity: creates “jelly sandwich”
I Newton linearization produces local anisotropy
I heating: localization
I coupling to other physical processes

I multilevel methods
I need accurate coarse grids
I need effective smoothers



Multigrid separates scales, feedback between scales



The Great Solver Schism: Monolithic or Split?

Monolithic

I Direct solvers

I Coupled Schwarz

I Coupled Neumann-Neumann
(need unassembled matrices)

I Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

I Physics-split Schwarz
(based on relaxation)

I Physics-split Schur
(based on factorization)

I approximate commutators
SIMPLE, PCD, LSC

I segregated smoothers
I Augmented Lagrangian
I “parabolization” for stiff

waves

X Need to understand global
coupling strengths

I Preferred data structures depend on which method is used.

I Interplay with geometric multigrid.
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Three schools of thought

I Multigrid (Brandt, Hackbusch, . . . )
I originally for resolved/asymptotic spatial discretizations
I textbook: reach discretization error in one F-cycle
I matrix-light/free, good for bandwidth
I FAS well-developed for nonlinear problems

I Multilevel Domain Decomposition (Mandel, Dohrmann, Widlund)
I leverage direct subdomain solvers, minimize communication
I rapid coarsening κ(P−1A)∼

(
1+ log H

h

)2(L−1)

I often formulated only as two-level methods
I typically with domain-conforming coefficients
I lightly developed for nonlinear (e.g. ASPIN [Cai and Keyes])

I Multiscale Finite Elements (Babuska, Arbogast, . . . )
I local preprocessing to construct coarse space
I rarely/never revisit fine space
I mostly restricted to linear problems



Computable Convergence Measures

I Prolongation P : Vcoarse→ Vfine

I Restriction R : Vfine→ Vcoarse

I I−PR : Vfine→ Vfine removes part of vector visible in coarse
space

I Error iteration matrix I−M−1A, worst-case convergence factor is
λmax

I “Interpolation must be able to approximate an eigenvector with
error bound proportional to the size of the associated eigenvalue.”

I maxx ‖x‖(I−PR)S(I−PR) /‖x‖A

I What can we do before we have prolongation P?



Compatible Relaxation

[Livne 2004]

I Apply smoother subject to
constraint R̂x = 0

1. x̃n = xn−1 +S−1
A

(
r(xn−1)

)
2. xn = x̃n +S−1

R
(
R̂x̃n)

)
I Method to determine when

coarse space is rich enough

I Slow to relax points/regions
good candidates for coarse
points/aggregates

I If subdomain solves used for
smoothing, only interfaces are
candidates



Coarse basis functions

I ‖PRx‖A +‖(I−PR)x‖A ≤ C‖x‖A

I “decompose any x into parts without increasing energy much”

I near-null spaces must be represented exactly (partition of unity)

I number of rows of R determined already, usually P = RT

I energy minimization with specified support [Wan, Chan, Smith;
Mandel, Brezina, Vanek]

I smoothed aggregation: Psmooth = (I−ωD−1A)Pagg

I classical AMG: each fine point processed independently

I domain decomposition/multiscale FEM: solve subdomain
problems



Example: BDDC/FETI-DP coarse basis function

[Mandel and Sousedik 2010]

I only low-order
continuity between
subdomains

I corrected by more
technical subdomain
smoother



Why I like subdomain problems

[Arbogast 2011]

I subassembly avoids explicit matrix
triple product Acoarse← PTAfineP

I can update the coarse operator
locally (e.g. local nonlinearity)

I need not assemble entire fine grid
operator

I can coarsen very rapidly (at least in
smooth regions)

I lower communication setup phase



Complication for saddle point problems

(
A BT

B 0

)
I want uniform stability for coarse problem

I respect inf-sup condition, similar to fine grid
I want exact representation of volumetric mode

I i.e. we can’t cheat on conservation while upscaling
I to be rigorous, we need to evaluate face integrals

I self-similar coarse discretizations are attractive

I heuristic algebraic coarsening also possible [Adams 2004]



Nonlinear problems

I matrix-based smoothers require global linearization

I nonlinearity often more efficiently resolved locally

I nonlinear additive or multiplicative Schwarz

I nonlinear/matrix-free is good if

C =
(cost to evaluate residual at one point) ·N

(cost of global residual)
∼ 1

I finite difference: C < 2
I finite volume: C ∼ 2, depends on reconstruction
I finite element: C ∼ number of vertices per cell

I larger block smoothers help reduce C



Smoothing for saddle point systems

(
A BT

B 0

)
I pressure has no self-coupling

I pressure error modes not spectrally separated
I approaches

I block smoothers (Vanka)
I splitting with approximate Schur complement
I amplify fine-grid modes



Vanka block smoothers

I solve pressure-centered cell problems
(better for discontinuous pressure)

I robust convergence factor ∼ 0.3 if coarse grids are accurate

I 1D energy minimizing interpolants easy and effective

I can use assembled sparse matrices, but more efficient without



Changing Associativity: Distributive Smoothing

PAx = Pb APy = b, x = Py

I Normal Preconditioning: make PA or AP well-conditioned
I Alternative: amplify high-frequency modes

I Multigrid smoothers only need to relax high-frequency modes
I Easier to do when spectrally separated: h-ellipticity

I pointwise smoothers (Gauss-Seidel) and polynomial/multistage
methods

I Mechanics: form the product PA or AP and apply “normal” method
I Example (Stokes)

A∼
(
−∇2 ∇

∇· 0

)
P∼

(
1 −∇

0 −∇2

)
AP∼

(
−∇2 “0”
∇· −∇2

)
I Convergence factor 0.32 (as good as Laplace) for smooth

problems



Coupled MG for Stokes, split smoothers

J =

(
A BT

B C

)
Psmooth =

(
ASOR 0

B M

)

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_block_size 3
-mg_levels_pc_fieldsplit_0_fields 0,1
-mg_levels_pc_fieldsplit_1_fields 2
-mg_levels_fieldsplit_0_pc_type sor
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Multi-physics coupling in PETSc

Momentum Pressure

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting
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Multi-physics coupling in PETSc

Momentum PressureStokes

Energy Geometry

Ice

Boundary Layer

Ocean

I package each “physics”
independently

I solve single-physics and
coupled problems

I semi-implicit and fully implicit

I reuse residual and Jacobian
evaluation unmodified

I direct solvers, fieldsplit inside
multigrid, multigrid inside
fieldsplit without recompilation

I use the best possible matrix
format for each physics
(e.g. symmetric block size 3)

I matrix-free anywhere

I multiple levels of nesting



Splitting for Multiphysics[
A B
C D

][
x
y

]
=

[
f
g

]
I Relaxation: -pc_fieldsplit_type

[additive,multiplicative,symmetric_multiplicative][
A

D

]−1 [
A
C D

]−1 [
A

1

]−1
(

1−
[

A B
1

][
A
C D

]−1
)

I Gauss-Seidel inspired, works when fields are loosely coupled
I Factorization: -pc_fieldsplit_type schur[

A B
S

]−1[ 1
CA−1 1

]−1

, S = D−CA−1B

I robust (exact factorization), can often drop lower block
I how to precondition S which is usually dense?

I interpret as differential operators, use approximate commutators



rank 0

rank 2

rank 1

rank 0

rank 1

rank 2

LocalToGlobalMapping

Monolithic Global Monolithic Local

Split Local

GetLocalSubMatrix()

Split Global

GetSubMatrix() / GetSubVector()

LocalToGlobal()

rank 0

rank 1

rank 2

Work in Split Local space, matrix data structures reside in any space.



Multiphysics Assembly Code: Jacobians
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {

// Access components as for residuals
MatGetLocalSubMatrix(B,is[0],is[0],&Buu);
MatGetLocalSubMatrix(B,is[0],is[1],&Buk);
MatGetLocalSubMatrix(B,is[1],is[0],&Bku);
MatGetLocalSubMatrix(B,is[1],is[1],&Bkk);
FormJacobianLocal_U(user,&infou,u,k,Buu); // single physics
FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
FormJacobianLocal_KU(user,&infou,&infok,u,k,Bku); // coupling
FormJacobianLocal_K(user,&infok,u,k,Bkk); // single physics
MatRestoreLocalSubMatrix(B,is[0],is[0],&Buu);
// More restores

I Assembly code is independent of matrix format
I Single-physics code is used unmodified for coupled problem
I No-copy fieldsplit:

-pack_dm_mat_type nest -pc_type fieldsplit
I Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps



Quasi-Newton revisited: ameliorating setup costs
I Newton-Krylov with analytic Jacobian

Lag FunctionEval JacobianEval PCSetUp PCApply

1 bt 12 8 8 31
1 cp 31 6 6 24
2 bt — diverged —
2 cp 41 4 4 35
3 cp 50 4 4 44

I Jacobian-free Newton-Krylov with lagged preconditioner
Lag FunctionEval JacobianEval PCSetUp PCApply

1 bt 23 11 11 31
2 bt 48 4 4 36
3 bt 64 3 3 52
4 bt 87 3 3 75

I Limited-memory Quasi-Newton/BFGS with lagged solve for H0

Restart H0 FunctionEval JacobianEval PCSetUp PCApply

1 cp 10−5 17 4 4 35
1 cp preonly 21 5 5 10
3 cp 10−5 21 3 3 43
3 cp preonly 23 3 3 11
6 cp 10−5 29 2 2 60
6 cp preonly 29 2 2 14

pseudo-plastic
rheology
-snes_type qn

-snes_qn_scale_type

jacobian



Performance of assembled versus unassembled
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tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



Coarse levels may not be cheaper than fine levels

[Gahvari, Schulz, Yang, Jordan, Gropp 2011]

I latency for longer-range communication outweighs smaller data
I very aggressive coarsening important to limit number of levels
I alternatives: additive multigrid, redundant coarse grids



Multilevel Solvers are a Way of Life

I ingredients that discretizations can provide
I identify “fields”
I topological coarsening, possibly for fields
I near-null space information
I “natural” subdomains
I subdomain integration, face integration
I element or subdomain assembly/matrix-free smoothing

I solver composition
I most splitting methods accessible from command line
I energy optimization for tentative coarse basis functions
I algebraic form of distributive relaxation
I generic assembly for large systems and components
I working on flexibile “library-assisted” nonlinear multigrid
I adding support for interactive eigenanalysis
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