Multilevel Stokes flow solvers Adapting to heterogeneity and rheology

Jed Brown

Mathematics and Computer Science Division, Argonne National Laboratory

CIG Mantle/Lithosphere 2012-07-30

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Intent of this talk

- observation: solver scalability is the bottleneck at scale
- "black box" solvers are not sustainable
 - optimal solvers must accurately handle all scales
 - optimality is crucial for large-scale problems
 - hardware puts up a spirited fight to abstraction
- introduce multilevel solver concepts
- outline ingredients that discretizations can provide to solvers
- discuss algorithmic trade-offs
- current state of solver software and what we are working on

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction

Multiscale Toolbox

Coarse grids Smoothing

Software and performance

Coupling software Performance considerations

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Outline

Introduction

Multiscale Toolbox

Coarse grids Smoothing

Software and performance

Coupling software Performance considerations

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

It's all about algorithms (at the petascale)

• Given, for example:

- a "physics" phase that scales as O(N)
- a "solver" phase that scales as $O(N^{3/2})$
- computation is almost all solver after several doublings
- Most applications groups have not yet "felt" this curve in their gut
 - as users actually get into queues with more than 4K processors, this will change

Weak scaling limit, assuming efficiency of 100% in both physics and solver phases

(c/o David Keyes)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Challenges for elliptic solvers

multiscale material coefficients

long, thin high viscosity: transmit stresses long distances

▲□▶▲□▶▲□▶▲□▶ □ のQで

- "jelly sandwich": release long-range stresses locally
- nonlinearity
 - plasticity: creates "jelly sandwich"
 - Newton linearization produces local anisotropy
 - heating: localization
 - coupling to other physical processes
- multilevel methods
 - need accurate coarse grids
 - need effective smoothers

Multigrid separates scales, feedback between scales

▲□▶▲圖▶▲≣▶▲≣▶ ■ のへで

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

Outline

Introduction

Multiscale Toolbox

Coarse grids Smoothing

Software and performance

Coupling software Performance considerations

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Three schools of thought

- Multigrid (Brandt, Hackbusch, ...)
 - originally for resolved/asymptotic spatial discretizations
 - textbook: reach discretization error in one F-cycle
 - matrix-light/free, good for bandwidth
 - FAS well-developed for nonlinear problems
- Multilevel Domain Decomposition (Mandel, Dohrmann, Widlund)
 - leverage direct subdomain solvers, minimize communication
 - rapid coarsening $\kappa(P^{-1}A) \sim \left(1 + \log \frac{H}{h}\right)^{2(L-1)}$
 - often formulated only as two-level methods
 - typically with domain-conforming coefficients
 - lightly developed for nonlinear (e.g. ASPIN [Cai and Keyes])

- Multiscale Finite Elements (Babuska, Arbogast, ...)
 - local preprocessing to construct coarse space
 - rarely/never revisit fine space
 - mostly restricted to linear problems

Computable Convergence Measures

- Prolongation $P: V_{\text{coarse}} \rightarrow V_{\text{fine}}$
- Restriction $R: V_{\text{fine}} \rightarrow V_{\text{coarse}}$
- ► I PR : V_{fine} → V_{fine} removes part of vector visible in coarse space
- ► Error iteration matrix $I M^{-1}A$, worst-case convergence factor is λ_{\max}
- "Interpolation must be able to approximate an eigenvector with error bound proportional to the size of the associated eigenvalue."

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

•
$$\max_{x} \|x\|_{(I-PR)S(I-PR)} / \|x\|_{A}$$

What can we do before we have prolongation P?

Compatible Relaxation

[Livne 2004]

- Apply smoother subject to constraint $\hat{R}x = 0$
 - 1. $\tilde{x}_n = x_{n-1} + S_A^{-1}(r(x_{n-1}))$ 2. $x_n = \tilde{x}_n + S_R^{-1}(\hat{R}\tilde{x}_n))$
- Method to determine when coarse space is rich enough
- Slow to relax points/regions good candidates for coarse points/aggregates
- If subdomain solves used for smoothing, only interfaces are candidates

Coarse basis functions

•
$$||PRx||_A + ||(I - PR)x||_A \le C ||x||_A$$

- "decompose any x into parts without increasing energy much"
- near-null spaces must be represented exactly (partition of unity)
- number of rows of R determined already, usually $P = R^T$
- energy minimization with specified support [Wan, Chan, Smith; Mandel, Brezina, Vanek]
- ► smoothed aggregation: $P_{\text{smooth}} = (I \omega D^{-1}A)P_{\text{agg}}$
- classical AMG: each fine point processed independently
- domain decomposition/multiscale FEM: solve subdomain problems

Example: BDDC/FETI-DP coarse basis function

 only low-order continuity between subdomains

 corrected by more technical subdomain smoother

[Mandel and Sousedik 2010]

Why I like subdomain problems

[Arbogast 2011]

- ► subassembly avoids explicit matrix triple product $A_{\text{coarse}} \leftarrow P^T A_{\text{fine}} P$
- can update the coarse operator locally (e.g. local nonlinearity)
- need not assemble entire fine grid operator
- can coarsen very rapidly (at least in smooth regions)
- Iower communication setup phase

▲□▶▲□▶▲□▶▲□▶ □ のQで

Complication for saddle point problems

 $\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}$

- want uniform stability for coarse problem
 - respect inf-sup condition, similar to fine grid
- want exact representation of volumetric mode
 - i.e. we can't cheat on conservation while upscaling
- to be rigorous, we need to evaluate face integrals
 - self-similar coarse discretizations are attractive
- heuristic algebraic coarsening also possible [Adams 2004]

Nonlinear problems

- matrix-based smoothers require global linearization
- nonlinearity often more efficiently resolved locally
- nonlinear additive or multiplicative Schwarz
- nonlinear/matrix-free is good if

 $C = \frac{(\text{cost to evaluate residual at one point}) \cdot N}{(\text{cost of global residual})} \sim 1$

- finite difference: C < 2
- Finite volume: $C \sim 2$, depends on reconstruction
- ▶ finite element: *C* ~ number of vertices per cell
- larger block smoothers help reduce C

Smoothing for saddle point systems

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- pressure has no self-coupling
- pressure error modes not spectrally separated
- approaches
 - block smoothers (Vanka)
 - splitting with approximate Schur complement
 - amplify fine-grid modes

Vanka block smoothers

- solve pressure-centered cell problems (better for discontinuous pressure)
- \blacktriangleright robust convergence factor ~ 0.3 if coarse grids are accurate
- 1D energy minimizing interpolants easy and effective
- can use assembled sparse matrices, but more efficient without

Changing Associativity: Distributive Smoothing

$$PAx = Pb$$
 $APy = b, x = Py$

- Normal Preconditioning: make PA or AP well-conditioned
- Alternative: amplify high-frequency modes
 - Multigrid smoothers only need to relax high-frequency modes
 - Easier to do when spectrally separated: h-ellipticity
 - pointwise smoothers (Gauss-Seidel) and polynomial/multistage methods
 - Mechanics: form the product PA or AP and apply "normal" method
 - Example (Stokes)

$$A \sim \begin{pmatrix} -\nabla^2 & \nabla \\ \nabla \cdot & 0 \end{pmatrix} \quad P \sim \begin{pmatrix} 1 & -\nabla \\ 0 & -\nabla^2 \end{pmatrix} \quad AP \sim \begin{pmatrix} -\nabla^2 & ``0" \\ \nabla \cdot & -\nabla^2 \end{pmatrix}$$

 Convergence factor 0.32 (as good as Laplace) for smooth problems

Coupled MG for Stokes, split smoothers

$$J = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}$$
$$P_{\text{smooth}} = \begin{pmatrix} A_{\text{SOR}} & 0 \\ B & M \end{pmatrix}$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

æ

Outline

Introduction

Multiscale Toolbox

Coarse grids Smoothing

Software and performance

Coupling software Performance considerations

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

MomentumStokes Pressure

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

Boundary Layer

Ocean

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

► Relaxation: -pc_fieldsplit_type [additive,multiplicative,symmetric_multiplicative] $\begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{pmatrix}^{-1} \begin{pmatrix} A \\$

Gauss-Seidel inspired, works when fields are loosely coupled
Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} A & B \\ & S \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators

Work in Split Local space, matrix data structures reside in any space.

Multiphysics Assembly Code: Jacobians

```
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {
// Access components as for residuals
MatGetLocalSubMatrix(B,is[0],is[0],&Buu);
MatGetLocalSubMatrix(B,is[0],is[1],&Buk);
MatGetLocalSubMatrix(B,is[1],is[0],&Bku);
MatGetLocalSubMatrix(B,is[1],is[1],&Bkk);
FormJacobianLocal_U(user,&infou,u,k,Buu); // single physics
FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
FormJacobianLocal_KU(user,&infou,&infok,u,k,Bku); // single physics
MatRestoreLocalSubMatrix(B,is[0],is[0],&Buu);
// More restores
```

- Assembly code is independent of matrix format
- Single-physics code is used unmodified for coupled problem
- No-copy fieldsplit:

```
-pack_dm_mat_type nest -pc_type fieldsplit
```

Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps

Quasi-Newton revisited: ameliorating setup costs

		<u> </u>			
Lag	FunctionEva	I JacobianEva	I PCSetUp	PCApply	
1 bt	12	8	8	31	pseudo-plastic
1 cp	31	6	6	24	rheology
2 bt	2 bt — diverged —				meenegy
2 cp	41	4	4	35	-snes_type qn
3 ср	50	4	4	44	-snes_qn_scale_type
Jacobian-free Newton-Krylov with lagged preconditioner					r jacobian
Lag	FunctionEval	JacobianEval	PCSetUp	PCApply	•
1 bt	23	11	11	31	
2 bt	48	4	4	36	
3 bt	64	3	3	52	
4 bt	87	3	3	75	
Limited-memory Quasi-Newton/BFGS with lagged solve					e for H_0
Resta	rt H ₀	FunctionEval	JacobianEval	PCSetUp	PCApply
1 cp	10^{-5}	17	4	4	35
1 cp	preonly	21	5	5	10
3 ср	10^{-5}	21	3	3	43
3 cp	preonly	23	3	3	11
6 cp	10-5	29	2	2	60
6 cp	preonly	29	2	2	14

Newton-Krylov with analytic Jacobian

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%</p>

Coarse levels may not be cheaper than fine levels

[Gahvari, Schulz, Yang, Jordan, Gropp 2011]

- latency for longer-range communication outweighs smaller data
- very aggressive coarsening important to limit number of levels
- alternatives: additive multigrid, redundant coarse grids

Multilevel Solvers are a Way of Life

- ingredients that discretizations can provide
 - identify "fields"
 - topological coarsening, possibly for fields
 - near-null space information
 - "natural" subdomains
 - subdomain integration, face integration
 - element or subdomain assembly/matrix-free smoothing
- solver composition
 - most splitting methods accessible from command line
 - energy optimization for tentative coarse basis functions
 - algebraic form of distributive relaxation
 - generic assembly for large systems and components
 - working on flexibile "library-assisted" nonlinear multigrid
 - adding support for interactive eigenanalysis