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Motivation

v

Nature has many spatial and temporal scales
» Porous media, turbulence, kinetics, fracture

v

Robust discretizations and implicit solvers are needed to cope
Computer architecture is increasingly hierarchical
» algorithms should conform to this structure

v
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Solver scalability is a crucial bottleneck at scale
“pblack box” solvers are not sustainable

» optimal solvers must accurately handle all scales
» optimality is crucial for large-scale problems
» hardware puts up a spirited fight to abstraction
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It’s all about algorithms (at the petascale)
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Phenomenological Models

With four parameters | can fit an elephant, and with five | can
make him wiggle his trunk. — John von Neumann

» Over-fitting is a pathology » Fracture
» Good subgrid models do not
require re-tuning parameters » Turbulence modeling

A professional problem exists [...] there is a need for higher
standards on the control of numerical accuracy. [...] it was
impossible to evaluate and compare the accuracy of
different turbulence models, since one could not distinguish
physical modeling errors from numerical errors related to the
algorithm and grid. [...] The Journal of Fluids Engineering
will not accept for publication any paper |...] that fails to
address the task of systematic truncation error testing
and accuracy estimation. — 71986



Diffusive cooling

gnedl] B0, 29
Pentagonal structures occur only for
narrow band of thermal conditions and
composition
Variational (phase-field) approach

reproduces thresholds without tuning
[Bourdin, Francfort, Marigo]



Numerical Homogenization/Upscaling

1. Multiscale basis functions

integrate against microscale coefficients

robust theory for linear elliptic equations

popular in porous media and composite materials

practically computable using multigrid ideas, partition of unity
method

» no support for stochastic microscale

2. Coefficient/equation upscaling
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» a good method reproduces statistics

» cannot recover fine grid solution

» suitable for nonlinear coarse problems
» can derive coarse Hamiltonian

» can exploit repetitive structure in fine grid

» coarse space is sufficient if compatible relaxation/Monte-Carlo
converges fast

» procedure can be global or local



Why | like subdomain problems
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subassembly avoids explicit matrix
triple product Acoarse < P! Asine P

can update the coarse operator
locally (e.g. local nonlinearity)

need not assemble entire fine grid
operator

if repetitive structure, need not store
entire fine grid state

can coarsen very rapidly (especially
in smooth regions)

lower communication setup phase



T formulation of Full Approximation Scheme (FAS)

» classical formulation: “coarse grid accelerates fine grid solution’
» 7 formulation: “fine grid improves accuracy of coarse grid”
» To solve Nu = f, recursively apply

pre-smooth  &t" < Sho (g, f")

solve coarse problem for u? Ny = 4 NHJHg" — [ Nhh

H
Ty

correction and post-smooth " + " (ﬁh + 10 (ut 77fﬁh),fh>

post
17 residual restriction
1 solution restriction
I solution interpolation

fA=1f"  restriction of forcing term
{She:Shost}  Smoothing operations on the fine grid




Multiscale compression and recovery using T

e checkpoint converged coarse state prtl (7111 bn)
e recover using FMG anchored at ¢, + 1 ?

.
.

needs only £.;, neighbor points
 correction is local next solve

FMG Recovery

Compress transient simulation with local decompression
Remove communication from all but coarse grid
» Convergence speed not affected, modest redundant computation

v

v

» In-situ visualization and reanalysis with very few full checkpoints

v

Checkpointing for discrete adjoints

v

Resiliency to hardware failure



Solve PDE in fewer flops
than evaluating an analytic
solution

Solve PDE in

0(Jlogn| [loge|?) memory
Compute k eigenvalues in
O (nlogk)

Project vector onto
eigenbasis in & (nlogk)
Optimal-order graph
partitioning and clustering

Cool Topics in Multiscale Computation

» Continuation and transient

problems without revisiting
fine grid

Global optimization without
sacrificing optimality,
“multiscale annealing”

Accelerate Monte-Carlo
slowdown due to spuriously
correlated sampling



Multilevel structure for uncertainty quantification
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[Mishra, Schwab, Sukys, 2012]




Outlook

» Multiscale processes are ubiquitous and important

» Multiscale computation necessary for modern simulation and
analysis

» Embrace multiscale structure, make it work for you

» Raise level of abstraction at which we formulate problems

» Think in terms of robust functionals and statistics
rather than pointwise solutions

» Multiscale computation often reveals modeling flaws,
guides their rectification

» Good microscale models are important for deriving and correcting
coarse models



