Pervasive Multiscale Modeling, Analysis, and Solvers

Jed Brown

Mathematics and Computer Science Division, Argonne National Laboratory

MathGeo, Princeton, 2012-10-02

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Motivation

- Nature has many spatial and temporal scales
 - Porous media, turbulence, kinetics, fracture
- Robust discretizations and implicit solvers are needed to cope

- Computer architecture is increasingly hierarchical
 - algorithms should conform to this structure
- Solver scalability is a crucial bottleneck at scale
- "black box" solvers are not sustainable
 - optimal solvers must accurately handle all scales
 - optimality is crucial for large-scale problems
 - hardware puts up a spirited fight to abstraction

It's all about algorithms (at the petascale)

• Given, for example:

- a "physics" phase that scales as O(N)
- a "solver" phase that scales as $O(N^{3/2})$
- computation is almost all solver after several doublings
- Most applications groups have not yet "felt" this curve in their gut
 - as users actually get into queues with more than 4K processors, this will change

Weak scaling limit, assuming efficiency of 100% in both physics and solver phases

(c/o David Keyes)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Phenomenological Models

With four parameters I can fit an elephant, and with five I can make him wiggle his trunk. — John von Neumann

- Over-fitting is a pathology
- Good subgrid models do not require re-tuning parameters
- Fracture
- Turbulence modeling

A professional problem exists [...] there is a need for higher standards on the control of numerical accuracy. [...] it was impossible to evaluate and compare the accuracy of different turbulence models, since one could not distinguish physical modeling errors from numerical errors related to the algorithm and grid. [...] The Journal of Fluids Engineering will not accept for publication any paper [...] that fails to address the task of systematic truncation error testing and accuracy estimation. — 1986

Diffusive cooling

- Pentagonal structures occur only for narrow band of thermal conditions and composition
- Variational (phase-field) approach reproduces thresholds without tuning [Bourdin, Francfort, Marigo]

Numerical Homogenization/Upscaling

- 1. Multiscale basis functions
 - integrate against microscale coefficients
 - robust theory for linear elliptic equations
 - popular in porous media and composite materials
 - practically computable using multigrid ideas, partition of unity method
 - no support for stochastic microscale
- 2. Coefficient/equation upscaling
 - a good method reproduces statistics
 - cannot recover fine grid solution
 - suitable for nonlinear coarse problems
 - can derive coarse Hamiltonian
- can exploit repetitive structure in fine grid
- coarse space is *sufficient* if compatible relaxation/Monte-Carlo converges fast

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

procedure can be global or local

Why I like subdomain problems

- ► subassembly avoids explicit matrix triple product $A_{\text{coarse}} \leftarrow P^T A_{\text{fine}} P$
- can update the coarse operator locally (e.g. local nonlinearity)
- need not assemble entire fine grid operator
- if repetitive structure, need not store entire fine grid state
- can coarsen very rapidly (especially in smooth regions)

▲□▶▲□▶▲□▶▲□▶ □ のQで

lower communication setup phase

au formulation of Full Approximation Scheme (FAS)

- classical formulation: "coarse grid accelerates fine grid solution"
- τ formulation: "fine grid improves accuracy of coarse grid"
- To solve Nu = f, recursively apply

 $\begin{array}{ll} & \text{pre-smooth} & \tilde{u}^h \leftarrow S^h_{\text{pre}}(u^h_0,f^h) \\ \text{solve coarse problem for } u^H & N^H u^H = f^H + \underbrace{N^H \hat{I}^H_h \tilde{u}^h - I^H_h N^h \tilde{u}^h}_{\tau^H_h} \\ & \text{correction and post-smooth} & u^h \leftarrow S^h_{\text{post}} \Big(\tilde{u}^h + I^h_H (u^H - \hat{I}^H_h \tilde{u}^h), f^h \Big) \end{array}$

 $\begin{array}{ll} I_h^H & \mbox{residual restriction} \\ \hat{I}_h^H & \mbox{solution restriction} \\ I_h^h & \mbox{solution interpolation} \\ f^H = I_h^H f^h & \mbox{restriction of forcing term} \\ \{S_{\rm pre}^h, S_{\rm post}^h\} & \mbox{smoothing operations on the fine grid} \end{array}$

Multiscale compression and recovery using au

- Compress transient simulation with local decompression
- Remove communication from all but coarse grid
 - Convergence speed not affected, modest redundant computation

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

- In-situ visualization and reanalysis with very few full checkpoints
- Checkpointing for discrete adjoints
- Resiliency to hardware failure

Cool Topics in Multiscale Computation

- Solve PDE in fewer flops than evaluating an analytic solution
- Solve PDE in $\mathscr{O}(|\log n| |\log \varepsilon|^d)$ memory
- ► Compute k eigenvalues in 𝒪(n log k)
- Project vector onto eigenbasis in O(nlogk)
- Optimal-order graph partitioning and clustering

- Continuation and transient problems without revisiting fine grid
- Global optimization without sacrificing optimality, "multiscale annealing"
- Accelerate Monte-Carlo slowdown due to spuriously correlated sampling

Multilevel structure for uncertainty quantification

- Geometric hierarchy of models
- More samples on coarse grids (much cheaper)
- $\blacktriangleright \mbox{ Mean and variance in } \sim 10 \times $$ cost of deterministic simulation $$ $$
- Robust to dimension of stochastic space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

[Mishra, Schwab, Šukys, 2012]

Outlook

- Multiscale processes are ubiquitous and important
- Multiscale computation necessary for modern simulation and analysis
- Embrace multiscale structure, make it work for you
- Raise level of abstraction at which we formulate problems
- Think in terms of robust functionals and statistics rather than pointwise solutions
- Multiscale computation often reveals modeling flaws, guides their rectification
- Good microscale models are important for deriving and correcting coarse models

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <