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Motivation

I Nature has many spatial and temporal scales
I Porous media, turbulence, kinetics, fracture

I Robust discretizations and implicit solvers are needed to cope
I Computer architecture is increasingly hierarchical

I algorithms should conform to this structure

I Solver scalability is a crucial bottleneck at scale
I “black box” solvers are not sustainable

I optimal solvers must accurately handle all scales
I optimality is crucial for large-scale problems
I hardware puts up a spirited fight to abstraction





Phenomenological Models

With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk. — John von Neumann

I Over-fitting is a pathology
I Good subgrid models do not

require re-tuning parameters

I Fracture

I Turbulence modeling

A professional problem exists [...] there is a need for higher
standards on the control of numerical accuracy. [...] it was
impossible to evaluate and compare the accuracy of
different turbulence models, since one could not distinguish
physical modeling errors from numerical errors related to the
algorithm and grid. [...] The Journal of Fluids Engineering
will not accept for publication any paper [...] that fails to
address the task of systematic truncation error testing
and accuracy estimation. — 1986



Diffusive cooling
I Pentagonal structures occur only for

narrow band of thermal conditions and
composition

I Variational (phase-field) approach
reproduces thresholds without tuning
[Bourdin, Francfort, Marigo]



Numerical Homogenization/Upscaling

1. Multiscale basis functions
I integrate against microscale coefficients
I robust theory for linear elliptic equations
I popular in porous media and composite materials
I practically computable using multigrid ideas, partition of unity

method
I no support for stochastic microscale

2. Coefficient/equation upscaling
I a good method reproduces statistics
I cannot recover fine grid solution
I suitable for nonlinear coarse problems
I can derive coarse Hamiltonian

I can exploit repetitive structure in fine grid

I coarse space is sufficient if compatible relaxation/Monte-Carlo
converges fast

I procedure can be global or local



Why I like subdomain problems

[Arbogast 2011]

I subassembly avoids explicit matrix
triple product Acoarse← PTAfineP

I can update the coarse operator
locally (e.g. local nonlinearity)

I need not assemble entire fine grid
operator

I if repetitive structure, need not store
entire fine grid state

I can coarsen very rapidly (especially
in smooth regions)

I lower communication setup phase



τ formulation of Full Approximation Scheme (FAS)

I classical formulation: “coarse grid accelerates fine grid solution”

I τ formulation: “fine grid improves accuracy of coarse grid”

I To solve Nu = f , recursively apply
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h ũh), f h
)

IH
h residual restriction

ÎH
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Multiscale compression and recovery using τ

I Compress transient simulation with local decompression
I Remove communication from all but coarse grid

I Convergence speed not affected, modest redundant computation

I In-situ visualization and reanalysis with very few full checkpoints

I Checkpointing for discrete adjoints

I Resiliency to hardware failure



Cool Topics in Multiscale Computation

I Solve PDE in fewer flops
than evaluating an analytic
solution

I Solve PDE in
O(|logn| |logε|d) memory

I Compute k eigenvalues in
O(n logk)

I Project vector onto
eigenbasis in O(n logk)

I Optimal-order graph
partitioning and clustering

I Continuation and transient
problems without revisiting
fine grid

I Global optimization without
sacrificing optimality,
“multiscale annealing”

I Accelerate Monte-Carlo
slowdown due to spuriously
correlated sampling



Multilevel structure for uncertainty quantification

I Geometric hierarchy of models

I More samples on coarse grids
(much cheaper)

I Mean and variance in ∼ 10×
cost of deterministic simulation

I Robust to dimension of
stochastic space

[Mishra, Schwab, Šukys, 2012]



Outlook

I Multiscale processes are ubiquitous and important

I Multiscale computation necessary for modern simulation and
analysis

I Embrace multiscale structure, make it work for you

I Raise level of abstraction at which we formulate problems

I Think in terms of robust functionals and statistics
rather than pointwise solutions

I Multiscale computation often reveals modeling flaws,
guides their rectification

I Good microscale models are important for deriving and correcting
coarse models


