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MULTIGRID IN LITHOSPHERE AND MANTLE DYNAMICS

Heterogeneous Stokes problems appear in various forms throughout
geodynamics, often coupled to viscoelasticity, viscoplasticity, and porous
media flow. As a bottleneck of many high-resolution studies, robust and
efficient Stokes solvers are needed. These methods are necessarily
multilevel and require accurate coarse representations of operators. The
problems arising in lithosphere dynamics are challenging for standard
methods due to multiscale structures creating long-range interaction
through thin structures that are difficult to accurately represent using
conventional coarse spaces.

NONLINEARITY: PLASTICITY AND PHASE CHANGE

Strong material nonlinearities such as plasticity cause methods based
on global linearization, such as Newton and Picard, to require many
iterations. Nonlinear multigrid avoids global linearization, leading to
faster convergence rates when effective nonlinear smoothers are
available. With a nonlinear smoother, we naturally want to build
interpolation and the coarse operator without global assembly of a
fine-grid operator. Unfortunately, traditional geometric multigrid does not
accurately interpolate low-frequency modes and rediscretized coarse
operators are notoriously inaccurate in highly heterogeneous cases. A
subdomain-centric coarse grid construction only involves solving local
problems, thus allowing it to be updated only in regions with
rapidly-changing nonlinearities.

MATRIX-FREE FOR PERFORMANCE
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Figure: Relative cost in memory bandwidth and flops
to apply linearized PDE operator arising in p-version
finite element discretization of nonlinear PDEs with
b = 1, 3, 5 degrees of freedom per node.

Assembled sparse
matrices have long been
a preferred representation
for PDE operators,
but are a remarkably
poor fit for modern
hardware due to memory
bandwidth requirements.
A matrix-vector
product computed
using an assembled matrix
cannot have an arithmetic
intensity higher than 1/4,
leaving modern floating point hardware severely under-utilized.

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)
Sandy Bridge 6-core 21* 150 7.2
Magny Cours 16-core 42* 281 6.7
Blue Gene/Q node 43 205 4.8
Tesla M2050 144 515 3.6
Kepler K20 250 1310 5.2

Table: Balanced arithmetic intensity (flops/byte) for several architectures.

THE τ FORMULATION FOR MULTISCALE MODELING

The Full Approximation Scheme is a naturally nonlinear multigrid
algorithm that allows flexible incorporation of multilevel information.

I classical formulation: “coarse grid accelerates fine grid solution”
I τ formulation: “fine grid improves accuracy of coarse grid”
I To solve Nu = f , recursively apply
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I At convergence, uH∗ = ÎH
h uh∗ solves the τ -corrected coarse grid equation

NHuH = f H + τH
h , thus τH

h is the “fine grid feedback” that makes the
coarse grid equation accurate.

I τH
h is local and need only be recomputed where it becomes stale.

SUBDOMAIN-CENTRIC MATRIX-FREE COARSENING

Objective: construct robust interpolation and coarse grid operator using
only (a) local neighbor information, (b) application of local nonlinear
operator, (c) point-block diagonal of principle linearization, and (d)
application of triangular distribution operator or splitting [3] for saddle
points.

1. Select subdomains to become “coarse elements”, add minimal stable
node set to preliminary set of coarse dofs C.

2. If available, add approximate null space to set of “low-energy” modes B
that must be approximated accurately.

3. Use compatible relaxation with point-block preconditioned polynomial
smoother to determine deficiencies of initial coarse basis.

4. Enrich C by adding poorly-converging points.
5. Optimize energy of local basis functions by computing partition of coarse

space B on the boundary, then (approximately) harmonically extending
to subdomain interior.

6. Optionally, use (non-local) bootstrap cycle [1] to improve B.

LOW-COMMUNICATION CYCLING
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The τ formulation removes
communication from all levels except
the coarsest. Instead of starting and
ending on the fine grid, a cycle starts
and ends on the coarse grid. The
figure shows the dependency graph of
3-level multigrid cycle that computes
the correction τ 0

1 (red) on the coarse
grid equation starting with coarse grid
state u0 (blue). A traditional multigrid
cycle which has “horizontal” dependencies at every level.

MULTISCALE COMPRESSION AND DECOMPRESSION
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FMG Decompression

I checkpoint converged coarse state
I recover using FMG anchored at `cp + 1
I needs only `cp neighbor points
I τ correction is local

I Fine state uh∗ recovered locally from converged coarse state uH∗ = ÎH
h uh∗

I Normal multigrid cycles visit all levels moving from n→ n + 1
I FMG recovery only accesses levels finer than `CP

I Only neighborhood of desired region needed during decompression
I Lightweight checkpointing for transient adjoint computation
I Postprocessing applications, e.g., in-situ visualization at high temporal

resolution in part of the domain

LOCAL DECOMPRESSION AND RESILIENCE
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control contains program stack, solver configuration, etc.
essential program state that cannot be easily reconstructed:

time-dependent solution, current optimization/bifurcation iterate
ephemeral easily recovered structures: assembled matrices,

preconditioners, residuals, Runge-Kutta stage solutions
I Essential state at time/optimization step n is inherently globally coupled

to step n− 1 (otherwise we could use an explicit method)
I Coarse level checkpoints are orders of magnitude smaller, but allow

rapid recovery of essential state
I FMG recovery needs only nearest neighbors

STATUS

Proof-of-concept compatible relaxation and subdomain coarsening
implemented using PETSc, similar robustness to modern smoothed
aggregation. Low-communication implementation and use of more
efficient data structures for local decomposition in progress. Merging
subdomain-centric approach with PCGAMG (algebraic multigrid
infrastructure), along with accessible user hooks for customization.
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