Multilevel solvers with adaptive coarse space construction for lithosphere dynamics

Jed Brown¹, Mark Adams², Matt Knepley³, Barry Smith¹

¹Mathematics and Computer Science Division, Argonne National Laboratory ²Columbia University ³University of Chicago

Frontiers in Computational Physics, 2012-12-19

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

Status quo for implicit solves in lithosphere dynamics

- global linearization using Newton or Picard
- assembly of a sparse matrix
- "block" factorization preconditioner with approximate Schur complement
- algebraic or geometric multigrid on positive-definite systems

Why is this bad?

- nonlinearities (e.g., plastic yield) are mostly local
 - feed back through nearly linear large scales
 - frequent visits to fine-scales even in nearly-linear regions
 - no way to locally update coarse grid operator
 - Newton linearization introduces anisotropy
- assembled sparse matrices are terrible for performance on modern hardware
 - memory bandwidth is very expensive compared to flops
 - fine-scale assembly costs a lot of memory
 - assembled matrices are good for algorithmic experimentation

・□ ▶ ・ □ ▶ ・ □ ▶ ・ □ ▶ ・ □ ● ・ の < @

block preconditioners require more parallel communication

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)	
Sparse matrix-vector product	1/6	
Dense matrix-vector product	1/4	
Unassembled matrix-vector product	pprox 8	
High-order residual evaluation	> 5	

Processor	BW (GB/s)	Peak (GF/s)	Balanced AI (F/B)
E5-2670 8-core	35	166	4.7
Magny Cours 16-core	49	281	5.7
Blue Gene/Q node	43	205	4.8
Tesla M2090	120	665	5.5
Kepler K20Xm	160	1310	8.2
Xeon Phi	150	1248	8.3

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%</p>

au formulation of Full Approximation Scheme (FAS)

- ► classical formulation: "coarse grid accelerates fine grid ∠ >
- ho au formulation: "fine grid feeds back into coarse grid" \nearrow
- To solve Nu = f, recursively apply

 $\begin{array}{c} \text{pre-smooth} \quad \tilde{u}^h \leftarrow S^h_{\text{pre}}(u^h_0, f^h) \\ \text{solve coarse problem for } u^H \quad N^H u^H = \underbrace{I^H_h f^h}_{f^H} + \underbrace{N^H \hat{I}^H_h \tilde{u}^h - I^H_h N^h \tilde{u}^h}_{\tau^H_h} \\ \text{correction and post-smooth} \quad u^h \leftarrow S^h_{\text{post}} \left(\tilde{u}^h + I^h_H (u^H - \hat{I}^H_h \tilde{u}^h), f^h \right) \\ \hline I^H_h \quad \text{residual restriction} \quad \hat{I}^H_h \quad \text{solution restriction} \\ I^H_h \quad \text{solution interpolation} \quad f^H = I^H_h f^h \quad \text{restricted forcing} \\ \{S^h_{\text{pre}}, S^h_{\text{post}}\} \quad \text{smoothing operations on the fine grid} \end{array}$

- At convergence, u^{H*} = Î^H_hu^{h*} solves the τ-corrected coarse grid equation N^Hu^H = f^H + τ^H_h, thus τ^H_h is the "fine grid feedback" that makes the coarse grid equation accurate.
- τ_h^H is *local* and need only be recomputed where it becomes stale.

Multiscale compression and recovery using au

Fine state u^{h*} recovered *locally* from converged coarse state $u^{H*} = \hat{I}_h^H u^{h*}$

- ▶ Normal multigrid cycles visit all levels moving from $n \rightarrow n+1$
- ► FMG recovery only accesses levels finer than ℓ_{CP}
- Only need neighborhood of desired region for decompression
- Lightweight checkpointing for transient adjoint computation
- Postprocessing applications, e.g., in-situ visualization at high temporal resolution in part of the domain

Four Schools of Thought for Multilevel Methods

- Multigrid (Brandt, Hackbusch, ...)
 - originally for resolved/asymptotic spatial discretizations
 - "textbook": reach discretization error in one F-cycle
 - matrix-light/free, good for memory bandwidth
 - FAS well-developed for nonlinear problems
- Multilevel Domain Decomposition (Mandel, Dohrmann, Widlund)
 - leverage direct subdomain solvers, minimize communication
 - rapid coarsening $\kappa(P^{-1}A) \sim \left(1 + \log \frac{H}{h}\right)^{2(L-1)}$
 - often formulated only as two-level methods, domain-conforming coefficients
 - lightly developed for nonlinear (e.g. ASPIN [Cai and Keyes])
- Multiscale Finite Elements (Babuska, Arbogast, ...)
 - Iocal preprocessing to construct linear coarse operator
 - popular in porous media and composite materials (robust theory)
- Equation-based multiscale models (many)
 - Renormalization multigrid/systematic upscaling (Brandt)
 - interpolation, equilibriation (compatible relaxation/Monte-Carlo), restriction
 - Heterogeneous multiscale method (E, Engquist)
 - reconstruction, constrained microscale simulation, data processing/compression

Computable Convergence Measures (Linear correction notation)

- Prolongation $P: V_{\text{coarse}} \rightarrow V_{\text{fine}}$
- Restriction $R: V_{\text{fine}} \rightarrow V_{\text{coarse}}$
- Smoother $S^{-1}: V_{\text{fine}} \rightarrow V_{\text{fine}}$ should remove high-frequency component of error
- ► $I PR : V_{\text{fine}} \rightarrow V_{\text{fine}}$ removes part of vector visible in coarse space
- Error iteration $I M^{-1}A$, worst-case convergence factor is λ_{max}
- "Interpolation must be able to approximate an eigenvector with error bound proportional to the size of the associated eigenvalue."

• Upper bound for convergence rate: $\max_{x} ||x||_{(I-PR)S(I-PR)} / ||x||_{A}$

- Distinct challenges to constructing coarse space and operator
 - Is the coarse space large enough to distinguish all low-energy modes?
 - Are those modes accurately represented? (Is P accurate enough?)
 - ► Is the coarse operator accurate? (Automatic with Galerkin-type *RAP* for nice problems.)

Compatible Relaxation

[Livne 2004]

- Apply smoother subject to constraint $\hat{R}x = 0$
 - 1. $\tilde{x}_n = x_{n-1} + S_A^{-1}(r(x_{n-1}))$ 2. $x_n = \tilde{x}_n + S_R^{-1}(\hat{R}\tilde{x}_n))$
- Method to determine when coarse space is rich enough
- Slow to relax points/regions good candidates for coarse points/aggregates
- If subdomain solves used for smoothing, only interfaces are candidates

Coarse basis functions

- $||PRx||_A + ||(I PR)x||_A \le C ||x||_A$
- "decompose any x into parts without increasing energy much"
- near-null spaces must be represented exactly (partition of unity)
- number of rows of R determined already, usually $P = R^T$
- energy minimization with specified support [Wan, Chan, Smith; Mandel, Brezina, Vanek; Xu, Zikatanov]
- ► smoothed aggregation: $P_{\text{smooth}} = (I \omega D^{-1}A)P_{\text{agg}}$
- classical AMG: each fine point processed independently
- domain decomposition/multiscale FEM: solve subdomain problems

Example: BDDC/FETI-DP coarse basis function

 only low-order continuity between subdomains

 corrected by more technical subdomain smoother

[Mandel and Sousedik 2010]

Why I like subdomain problems

- ► subassembly avoids explicit matrix triple product $A_{\text{coarse}} \leftarrow P^T A_{\text{fine}} P$
- can update the coarse operator locally (e.g. local nonlinearity)
- need not assemble entire fine grid operator
- if repetitive structure, need not store entire fine grid state
- can coarsen very rapidly (especially in smooth regions)

▲□▶▲□▶▲□▶▲□▶ □ のQで

lower communication setup phase

Subdomain Interfaces and Energy Minimization

[Xu and Zikatanov 2004]

- minimize energy of all basis functions (columns of P) subject to
 - fixed compact support
 - partition of unity (near-null space)
- enforce partition of unity using Lagrange multipliers
 - → λ(x) = 0 in coarse element
 interiors
 - means that globally optimal coarse basis functions are harmonic extensions of some interface values

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Local edge/face-centered problems

- Arbogast's multiscale dual-support elements for porous media
 - inconsistent for unaligned anisotropy
 - homogenization approach: upscale effective conductivity tensor from solution of periodic dual-support problem
- Dohrmann and Pechstein's balancing domain decomposition for elasticity with unaligned coefficients
 - balance "torn" interface values u_{ie}, u_{je}, written in terms of subdomain Schur complements
 - F̄_e = S_{iee}u_{ie} + S_{jee}u_{je}: sum of forces required along face e to displace subdomains i and j by u_{ie}, u_{je}
 - $\overline{u}_e = (S_{iee} + S_{jee})^{-1}\overline{f}_e$: continuous displacement
 - equivalent to a (different) dual-support basis

Complication for saddle point problems

- want uniform stability for coarse problem
 - respect inf-sup condition, similar to fine grid
 - make coarse grid mimic fine grid $(Q_2 P_1^{\text{disc}})$
- exact representation of volumetric mode
 - we can't cheat on conservation while upscaling
 - naturally involves face integrals (inconvenient for recursive application)
 - obtain similar quantity through solution of inhomogeneous Stokes problems
- heuristic algebraic coarsening also possible [Adams 2004]

Nonlinear problems

- matrix-based smoothers require global linearization
- nonlinearity often more efficiently resolved locally
- nonlinear additive or multiplicative Schwarz
- nonlinear/matrix-free is good if

 $C = \frac{(\text{cost to evaluate residual at one point}) \cdot N}{(\text{cost of global residual})} \sim 1$

- finite difference: C < 2
- Finite volume: $C \sim 2$, depends on reconstruction
- Finite element: $C \sim$ number of vertices per cell
- larger block smoothers help reduce C
- additive correction like Jacobi reduces C, but need to assemble corrector/scaling

Smoothing for saddle point systems

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- pressure has no self-coupling
- pressure error modes not spectrally separated
- approaches
 - block smoothers (Vanka)
 - amplify fine-grid modes (distributive relaxation)
 - splitting with approximate Schur complement

Vanka block smoothers

- solve pressure-centered cell problems (better for discontinuous pressure)
- \blacktriangleright robust convergence factor ~ 0.3 if coarse grids are accurate
- 1D energy minimizing interpolants easy and effective
- can use assembled sparse matrices, but more efficient without

Changing Associativity: Distributive Smoothing

$$PAx = Pb$$
 $APy = b, x = Py$

- Normal Preconditioning: make PA or AP well-conditioned
- Alternative: amplify high-frequency modes
 - Multigrid smoothers only need to relax high-frequency modes
 - Easier to do when spectrally separated: h-ellipticity
 - pointwise smoothers (Gauss-Seidel) and polynomial/multistage methods
 - Mechanics: form the product PA or AP and apply "normal" method
 - Example (Stokes)

$$A \sim \begin{pmatrix} -\nabla^2 & \nabla \\ \nabla \cdot & 0 \end{pmatrix} \quad P \sim \begin{pmatrix} 1 & -\nabla \\ 0 & -\nabla^2 \end{pmatrix} \quad AP \sim \begin{pmatrix} -\nabla^2 & ``0" \\ \nabla \cdot & -\nabla^2 \end{pmatrix}$$

 Convergence factor 0.32 (as good as Laplace) for smooth problems

Coupled MG for Stokes, split smoothers

$$J = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}$$
$$P_{\text{smooth}} = \begin{pmatrix} A_{\text{SOR}} & 0 \\ B & M \end{pmatrix}$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

æ

Outlook

- smoothing with point-block Jacobi Chebyshev and scaled diagonal for pressure
- needs only (subdomain "Neumann") nonlinear function evaluations and assembly of point-block diagonal matrices
- convergence rates similar to smoothed aggregation, but without fine-grid assembly
- allows local updates of coarse operator, but currently slower due to naive implementation
- Development in progress within PETSc
 - parallel implementation of dual-support problems without duplicating lots of work
 - homogenization-based nonlinear coarsening
 - true τ formulation with adaptive fine-grid visits and partial coarse operator updates
 - microstructure-compatible pressure interpolation
 - "spectrally-correct" nonlinear saddle-point smoothers
 - locally-computable spectral estimates for guaranteed-stable additive smoothers