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The Great Solver Schism: Monolithic or Split?

Monolithic

I Direct solvers

I Coupled Schwarz

I Coupled Neumann-Neumann
(need unassembled matrices)

I Coupled multigrid

X Need to understand local
spectral and compatibility
properties of the coupled
system

Split

I Physics-split Schwarz
(based on relaxation)

I Physics-split Schur
(based on factorization)

I approximate commutators
SIMPLE, PCD, LSC

I segregated smoothers
I Augmented Lagrangian
I “parabolization” for stiff

waves

X Need to understand global
coupling strengths

I Preferred data structures depend on which method is used.

I Interplay with geometric multigrid.



Status quo for implicit solves in lithosphere dynamics
I global linearization using Newton or Picard
I assembly of a sparse matrix
I “block” factorization preconditioner with approximate Schur

complement
I algebraic or geometric multigrid on positive-definite systems

Why is this bad?
I nonlinearities (e.g., plastic yield) are mostly local

I feed back through nearly linear large scales
I frequent visits to fine-scales even in nearly-linear regions
I no way to locally update coarse grid operator
I Newton linearization introduces anisotropy

I assembled sparse matrices are terrible for performance on
modern hardware

I memory bandwidth is very expensive compared to flops
I fine-scale assembly costs a lot of memory
I assembled matrices are good for algorithmic experimentation

I block preconditioners require more parallel communication



Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)

E5-2670 8-core 35 166 4.7
Magny Cours 16-core 49 281 5.7
Blue Gene/Q node 43 205 4.8
Tesla M2090 120 665 5.5
Kepler K20Xm 160 1310 8.2
Xeon Phi 150 1248 8.3



Performance of assembled versus unassembled
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tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



τ formulation of Full Approximation Scheme (FAS)
I classical formulation: “coarse grid accelerates fine grid↘↗
I τ formulation: “fine grid feeds back into coarse grid”↗↘
I To solve Nu = f , recursively apply
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IH
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H solution interpolation f H = IH

h f h restricted forcing
{Sh

pre,S
h
post} smoothing operations on the fine grid

I At convergence, uH∗ = ÎH
h uh∗ solves the τ-corrected coarse grid

equation NHuH = f H + τH
h , thus τH

h is the “fine grid feedback”
that makes the coarse grid equation accurate.

I τH
h is local and need only be recomputed where it becomes stale.



Multiscale compression and recovery using τ
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FMG Decompression

I checkpoint converged coarse state
I recover using FMG anchored at `cp +1
I needs only `cp neighbor points
I τ correction is local

I Fine state uh∗ recovered locally from converged coarse state
uH∗ = ÎH

h uh∗

I Normal multigrid cycles visit all levels moving from n→ n+1
I FMG recovery only accesses levels finer than `CP

I Only need neighborhood of desired region for decompression

I Lightweight checkpointing for transient adjoint computation

I Postprocessing applications, e.g., in-situ visualization at high
temporal resolution in part of the domain



Four Schools of Thought for Multilevel Methods
I Multigrid (Brandt, Hackbusch, . . . )

I originally for resolved/asymptotic spatial discretizations
I “textbook”: reach discretization error in one F-cycle
I matrix-light/free, good for memory bandwidth
I FAS well-developed for nonlinear problems

I Multilevel Domain Decomposition (Mandel, Dohrmann, Widlund)
I leverage direct subdomain solvers, minimize communication
I rapid coarsening κ(P−1A)∼

(
1+ log H

h

)2(L−1)

I often formulated only as two-level methods, domain-conforming
coefficients

I lightly developed for nonlinear (e.g. ASPIN [Cai and Keyes])
I Multiscale Finite Elements (Babuska, Arbogast, . . . )

I local preprocessing to construct linear coarse operator
I popular in porous media and composite materials (robust theory)

I Equation-based multiscale models (many)
I Renormalization multigrid/systematic upscaling (Brandt)

I interpolation, equilibriation (compatible relaxation/Monte-Carlo),
restriction

I Heterogeneous multiscale method (E, Engquist)
I reconstruction, constrained microscale simulation, data

processing/compression



Computable Convergence Measures (Linear correction
notation)

I Prolongation P : Vcoarse→ Vfine
I Restriction R : Vfine→ Vcoarse
I Smoother S−1 : Vfine→ Vfine should remove high-frequency

component of error
I I−PR : Vfine→ Vfine removes part of vector visible in coarse

space
I Error iteration I−M−1A, worst-case convergence factor is λmax
I “Interpolation must be able to approximate an eigenvector with

error bound proportional to the size of the associated eigenvalue.”

I Upper bound for convergence rate: maxx ‖x‖(I−PR)S(I−PR) /‖x‖A
I Distinct challenges to constructing coarse space and operator

I Is the coarse space large enough to distinguish all low-energy
modes?

I Are those modes accurately represented? (Is P accurate
enough?)

I Is the coarse operator accurate? (Automatic with Galerkin-type
RAP for nice problems.)



Compatible Relaxation

[Livne 2004]

I Apply smoother subject to
constraint R̂x = 0

1. x̃n = xn−1 +S−1
A

(
r(xn−1)

)
2. xn = x̃n +S−1

R
(
R̂x̃n)

)
I Method to determine when

coarse space is rich enough

I Slow to relax points/regions
good candidates for coarse
points/aggregates

I If subdomain solves used for
smoothing, only interfaces are
candidates



Coarse basis functions

I ‖PRx‖A +‖(I−PR)x‖A ≤ C‖x‖A

I “decompose any x into parts without increasing energy much”

I near-null spaces must be represented exactly (partition of unity)

I number of rows of R determined already, usually P = RT

I energy minimization with specified support [Wan, Chan, Smith;
Mandel, Brezina, Vanek; Xu, Zikatanov]

I smoothed aggregation: Psmooth = (I−ωD−1A)Pagg

I classical AMG: each fine point processed independently

I domain decomposition/multiscale FEM: solve subdomain
problems



Example: BDDC/FETI-DP coarse basis function

[Mandel and Sousedik 2010]

I only low-order
continuity between
subdomains

I corrected by more
technical subdomain
smoother



Why I like subdomain problems

[Arbogast 2011]

I subassembly avoids explicit matrix
triple product Acoarse← PTAfineP

I can update the coarse operator
locally (e.g. local nonlinearity)

I need not assemble entire fine grid
operator

I if repetitive structure, need not store
entire fine grid state

I can coarsen very rapidly (especially
in smooth regions)

I lower communication setup phase



Subdomain Interfaces and Energy Minimization

[Xu and Zikatanov 2004]

I minimize energy of all basis
functions (columns of P)
subject to

I fixed compact support
I partition of unity (near-null

space)
I enforce partition of unity using

Lagrange multipliers
I λ (x) = 0 in coarse element

interiors
I means that globally optimal

coarse basis functions are
harmonic extensions of
some interface values



Local edge/face-centered problems

I Arbogast’s multiscale dual-support elements for porous media
I inconsistent for unaligned anisotropy
I homogenization approach: upscale effective conductivity tensor

from solution of periodic dual-support problem
I Dohrmann and Pechstein’s balancing domain decomposition for

elasticity with unaligned coefficients
I balance “torn” interface values uie,uje, written in terms of

subdomain Schur complements
I f e = Sieeuie +Sjeeuje: sum of forces required along face e to

displace subdomains i and j by uie,uje
I ue = (Siee +Sjee)

−1f e: continuous displacement
I equivalent to a (different) dual-support basis



Complication for saddle point problems

(
A BT

B 0

)

I want uniform stability for coarse problem
I respect inf-sup condition, similar to fine grid
I make coarse grid mimic fine grid (Q2−Pdisc

1 )
I exact representation of volumetric mode

I we can’t cheat on conservation while upscaling
I naturally involves face integrals (inconvenient for recursive

application)
I obtain similar quantity through solution of inhomogeneous Stokes

problems

I heuristic algebraic coarsening also possible [Adams 2004]



Nonlinear problems
I matrix-based smoothers require global linearization
I nonlinearity often more efficiently resolved locally
I nonlinear additive or multiplicative Schwarz
I nonlinear/matrix-free is good if

C =
(cost to evaluate residual at one point) ·N

(cost of global residual)
∼ 1

I finite difference: C < 2
I finite volume: C ∼ 2, depends on reconstruction
I finite element: C ∼ number of vertices per cell

I larger block smoothers help reduce C
I additive correction like Jacobi reduces C,

but need to assemble corrector/scaling



Smoothing for saddle point systems

(
A BT

B 0

)
I pressure has no self-coupling

I pressure error modes not spectrally separated
I approaches

I block smoothers (Vanka)
I amplify fine-grid modes (distributive relaxation)
I splitting with approximate Schur complement



Vanka block smoothers

I solve pressure-centered cell problems
(better for discontinuous pressure)

I robust convergence factor ∼ 0.3 if coarse grids are accurate

I 1D energy minimizing interpolants easy and effective

I can use assembled sparse matrices, but more efficient without



Changing Associativity: Distributive Smoothing

PAx = Pb APy = b, x = Py

I Normal Preconditioning: make PA or AP well-conditioned
I Alternative: amplify high-frequency modes

I Multigrid smoothers only need to relax high-frequency modes
I Easier to do when spectrally separated: h-ellipticity

I pointwise smoothers (Gauss-Seidel) and polynomial/multistage
methods

I Mechanics: form the product PA or AP and apply “normal” method
I Example (Stokes)

A∼
(
−∇2 ∇

∇· 0

)
P∼

(
1 −∇

0 −∇2

)
AP∼

(
−∇2 “0”
∇· −∇2

)
I Convergence factor 0.32 (as good as Laplace) for smooth

problems



Coupled MG for Stokes, split smoothers

J =

(
A BT

B C

)
Psmooth =

(
ASOR 0

B M

)

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_block_size 3
-mg_levels_pc_fieldsplit_0_fields 0,1
-mg_levels_pc_fieldsplit_1_fields 2
-mg_levels_fieldsplit_0_pc_type sor



Outlook
I smoothing with point-block Jacobi Chebyshev and scaled

diagonal for pressure
I needs only (subdomain “Neumann”) nonlinear function

evaluations and assembly of point-block diagonal matrices
I convergence rates similar to smoothed aggregation, but without

fine-grid assembly
I allows local updates of coarse operator, but currently slower due

to naive implementation
I Development in progress within PETSc

I parallel implementation of dual-support problems without
duplicating lots of work

I homogenization-based nonlinear coarsening
I true τ formulation with adaptive fine-grid visits and partial coarse

operator updates
I microstructure-compatible pressure interpolation
I “spectrally-correct” nonlinear saddle-point smoothers
I locally-computable spectral estimates for guaranteed-stable

additive smoothers


