High Performance Implicit Solvers for Geodynamics These slides:

http://59A2.org/files/20130110-CIGWebinar.pdf

Jed Brown jedbrown@mcs.anl.gov

Jedbrownemes.am.gov

Mathematics and Computer Science Division, Argonne National Laboratory

CIG Webinar 2013-01-10

Outline

Role of implicit solvers

Common methods and algorithmic barriers

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Failure modes and troubleshooting

Coupling approaches

Stokes problems

Performance considerations

Outline

Role of implicit solvers

Common methods and algorithmic barriers

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Failure modes and troubleshooting

Coupling approaches

Stokes problems

Performance considerations

Definition (Stiffness)

A discretized PDE is stiff if the true physics propagates information much more than one grid cell over a time step length desirable for resolving transient dynamics.

Definition (Stiffness)

A discretized PDE is stiff if the true physics propagates information much more than one grid cell over a time step length desirable for resolving transient dynamics.

$$(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta Du + p1) - \rho g = 0$$

$$\rho_t + \nabla \cdot \rho u = 0$$

Definition (Stiffness)

A discretized PDE is stiff if the true physics propagates information much more than one grid cell over a time step length desirable for resolving transient dynamics.

$$(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta Du + p1) - \rho g = 0$$

$$\rho_t + \nabla \cdot \rho u = 0$$

1. Incompressibility: acoustic wave travels much faster than mantle or lithosphere time scale (anelastic; Mach number)

Definition (Stiffness)

A discretized PDE is stiff if the true physics propagates information much more than one grid cell over a time step length desirable for resolving transient dynamics.

$$(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta Du + p1) - \rho g = 0$$

$$\rho_t + \nabla \cdot \rho u = 0$$

1. Incompressibility: acoustic wave travels much faster than mantle or lithosphere time scale (anelastic; Mach number)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Convection insignificant compared to viscosity (unrelated to stiffness; Reynolds number)

Definition (Stiffness)

A discretized PDE is stiff if the true physics propagates information much more than one grid cell over a time step length desirable for resolving transient dynamics.

$$(\rho u)_t + \nabla \cdot (\rho u \otimes u - \eta Du + p1) - \rho g = 0$$

$$\rho_t + \nabla \cdot \rho u = 0$$

- 1. Incompressibility: acoustic wave travels much faster than mantle or lithosphere time scale (anelastic; Mach number)
- Convection insignificant compared to viscosity (unrelated to stiffness; Reynolds number)
- Relaxation fast compared to dynamical time scale (depends on observational scale)

It's all about algorithms (at the petascale)

• Given, for example:

- a "physics" phase that scales as O(N)
- a "solver" phase that scales as $O(N^{3/2})$
- computation is almost all solver after several doublings
- Most applications groups have not yet "felt" this curve in their gut
 - as users actually get into queues with more than 4K processors, this will change

Weak scaling limit, assuming efficiency of 100% in both physics and solver phases

(c/o David Keyes)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Outline

Role of implicit solvers

Common methods and algorithmic barriers

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Failure modes and troubleshooting

Coupling approaches

Stokes problems

Performance considerations

Evaluating methods

- Performance of methods will depend on grid resolution and model parameters (regime and heterogeneity).
- A method is:
 - scalable (also "optimal") if its performance is independent of resolution and parallelism
 - robust if its performance is (nearly) independent of model parameters
 - efficient if it solves the problem in a small multiple of the cost to evaluate the residual¹

Evaluating methods

- Performance of methods will depend on grid resolution and model parameters (regime and heterogeneity).
- A method is:
 - scalable (also "optimal") if its performance is independent of resolution and parallelism
 - robust if its performance is (nearly) independent of model parameters
 - efficient if it solves the problem in a small multiple of the cost to evaluate the residual¹
- Linear problems typically arise from linearizing a nonlinear problem. This step is not necessary, but it is convenient for reusing software and for debugging.

Taxonomy of implicit solvers

Global linearization: Picard and Newton

- Linear solve "J(u)w = -F(u)"
 - (sparse) direct vs. iterative (Krylov) with preconditioning
 - classical relaxation (Jacobi, Gauss-Seidel), incomplete factorization (ILU)
 - domain decomposition and multigrid
- Globalization: " $u_{next} = u + \alpha w$ "
 - Line search, trust region, continuation

Inherently nonlinear methods

Nonlinear GMRES, Nonlinear CG (can use preconditioning)

- Nonlinear domain decomposition
- Nonlinear multigrid: Full Approximation Scheme (FAS)

Taxonomy of implicit solvers

Global linearization: Picard and Newton

- Linear solve "J(u)w = -F(u)"
 - (sparse) direct vs. iterative (Krylov) with preconditioning
 - classical relaxation (Jacobi, Gauss-Seidel), incomplete factorization (ILU)
 - domain decomposition and multigrid
- Globalization: " $u_{next} = u + \alpha w$ "
 - Line search, trust region, continuation

Inherently nonlinear methods

Nonlinear GMRES, Nonlinear CG (can use preconditioning)

- Nonlinear domain decomposition
- Nonlinear multigrid: Full Approximation Scheme (FAS)
- These methods can be scalable.

Taxonomy of implicit solvers

Global linearization: Picard and Newton

- Linear solve "J(u)w = -F(u)"
 - (sparse) direct vs. iterative (Krylov) with preconditioning
 - classical relaxation (Jacobi, Gauss-Seidel), incomplete factorization (ILU)
 - domain decomposition and multigrid
- Globalization: " $u_{next} = u + \alpha w$ "
 - Line search, trust region, continuation

Inherently nonlinear methods

- Nonlinear GMRES, Nonlinear CG (can use preconditioning)
- Nonlinear domain decomposition
- Nonlinear multigrid: Full Approximation Scheme (FAS)
- How nonlinear are the scales? How expensive is setup?

What about direct linear solvers?

- By all means, start with a direct solver
- Direct solvers are robust, but not scalable
- ▶ 2D: $\mathscr{O}(n^{1.5})$ flops, $\mathscr{O}(n \log n)$ memory.
- ▶ **3D**: $\mathscr{O}(n^2)$ flops, $\mathscr{O}(n^{4/3})$ memory
- We will focus on iterative linear solvers

э

Matrices

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Matrices

Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

- 1. Sparse (e.g. discretization of a PDE operator)
- 2. Inverse of *anything* interesting $B = A^{-1}$
- 3. Jacobian of a nonlinear function $Jy = \lim_{\varepsilon \to 0} \frac{F(x+\varepsilon y) F(x)}{\varepsilon}$
- 4. Fourier transform $\mathscr{F}, \mathscr{F}^{-1}$
- 5. Other fast transforms, e.g. Fast Multipole Method
- 6. Low rank correction $B = A + uv^T$
- 7. Schur complement $S = D CA^{-1}B$
- 8. Tensor product $A = \sum_{e} A_x^e \otimes A_y^e \otimes A_z^e$
- 9. Linearization of a few steps of an explicit integrator

- 1. Sparse (e.g. discretization of a PDE operator)
- 2. Inverse of *anything* interesting $B = A^{-1}$
- 3. Jacobian of a nonlinear function $Jy = \lim_{\varepsilon \to 0} \frac{F(x+\varepsilon y) F(x)}{\varepsilon}$
- 4. Fourier transform $\mathscr{F}, \mathscr{F}^{-1}$
- 5. Other fast transforms, e.g. Fast Multipole Method
- 6. Low rank correction $B = A + uv^T$
- 7. Schur complement $S = D CA^{-1}B$
- 8. Tensor product $A = \sum_{e} A_x^e \otimes A_y^e \otimes A_z^e$
- 9. Linearization of a few steps of an explicit integrator
 - These matrices are dense. Never form them.

- 1. Sparse (e.g. discretization of a PDE operator)
- 2. Inverse of *anything* interesting $B = A^{-1}$
- 3. Jacobian of a nonlinear function $Jy = \lim_{\epsilon \to 0} \frac{F(x+\epsilon y) F(x)}{\epsilon}$
- 4. Fourier transform $\mathscr{F}, \mathscr{F}^{-1}$
- 5. Other fast transforms, e.g. Fast Multipole Method
- 6. Low rank correction $B = A + uv^T$
- 7. Schur complement $S = D CA^{-1}B$
- 8. Tensor product $A = \sum_{e} A_x^e \otimes A_y^e \otimes A_z^e$
- 9. Linearization of a few steps of an explicit integrator

These are not very sparse. Don't form them.

- 1. Sparse (e.g. discretization of a PDE operator)
- 2. Inverse of *anything* interesting $B = A^{-1}$
- 3. Jacobian of a nonlinear function $Jy = \lim_{\varepsilon \to 0} \frac{F(x+\varepsilon y) F(x)}{\varepsilon}$
- 4. Fourier transform $\mathscr{F}, \mathscr{F}^{-1}$
- 5. Other fast transforms, e.g. Fast Multipole Method
- 6. Low rank correction $B = A + uv^T$
- 7. Schur complement $S = D CA^{-1}B$
- 8. Tensor product $A = \sum_{e} A_x^e \otimes A_y^e \otimes A_z^e$
- 9. Linearization of a few steps of an explicit integrator
 - None of these matrices "have entries"

What can we do with a matrix that doesn't have entries?

Krylov solvers for Ax = b

- Krylov subspace: $\{b, Ab, A^2b, A^3b, \dots\}$
- Convergence rate depends on the spectral properties of the matrix
 - Existance of small polynomials $p_n(A) < \varepsilon$ where $p_n(0) = 1$.
 - condition number $\kappa(A) = ||A|| ||A^{-1}|| = \sigma_{\max}/\sigma_{\min}$
 - distribution of singular values, spectrum $\Lambda,$ pseudospectrum Λ_{ϵ}
- ► For any popular Krylov method *K*, there is a matrix of size *m*, such that *K* outperforms all other methods by a factor at least *O*(√*m*) [Nachtigal et. al., 1992]

Typically...

- The action $y \leftarrow Ax$ can be computed in $\mathscr{O}(m)$
- ► Aside from matrix multiply, the nth iteration requires at most 𝒪(mn)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The p-Bratu equation

2-dimensional model problem

$$-\nabla \cdot \left(\, |\nabla u|^{\mathfrak{p}-2} \, \nabla u \right) - \lambda e^u - f = 0, \qquad 1 \leq \mathfrak{p} \leq \infty, \quad \lambda < \lambda_{\mathsf{crit}}(\mathfrak{p})$$

Singular or degenerate when $\nabla u = 0$, turning point at λ_{crit} .

Regularized variant

$$-\nabla \cdot (\eta \nabla u) - \lambda e^{u} - f = 0$$
$$\eta(\gamma) = (\varepsilon^{2} + \gamma)^{\frac{p-2}{2}} \qquad \gamma(u) = \frac{1}{2} |\nabla u|^{2}$$

Jacobian

$$J(u)w \sim -\nabla \cdot \left[(\eta 1 + \eta' \nabla u \otimes \nabla u) \nabla w \right] - \lambda e^{u} w$$
$$\eta' = \frac{\mathfrak{p} - 2}{2} \eta / (\varepsilon^2 + \gamma)$$

Interpretation: conductivity tensor flattened in direction ∇u

Simple finite difference discretization in PETSc:
 \$ cd petsc/src/snes/examples/tutorials/; make ex15

The p-Bratu equation

2-dimensional model problem

$$-\nabla \cdot \left(\, |\nabla u|^{\mathfrak{p}-2} \, \nabla u \right) - \lambda e^u - f = 0, \qquad 1 \leq \mathfrak{p} \leq \infty, \quad \lambda < \lambda_{\mathsf{crit}}(\mathfrak{p})$$

Singular or degenerate when $\nabla u = 0$, turning point at λ_{crit} .

Regularized variant

$$-\nabla \cdot (\eta \nabla u) - \lambda e^{u} - f = 0$$

$$\eta(\gamma) = (\varepsilon^{2} + \gamma)^{\frac{p-2}{2}} \qquad \gamma(u) = \frac{1}{2} |\nabla u|^{2}$$

Jacobian

$$J(u)w \sim -\nabla \cdot \left[(\eta 1 + \eta' \nabla u \otimes \nabla u) \nabla w \right] - \lambda e^{u} w$$
$$\eta' = \frac{\mathfrak{p} - 2}{2} \eta / (\varepsilon^2 + \gamma)$$

Interpretation: conductivity tensor flattened in direction ∇u

- Simple finite difference discretization in PETSc:
 \$ cd petsc/src/snes/examples/tutorials/; make ex15
- Step 1: Write the residual.

- Start with p = 2 (standard Laplacian), define only residuals
- Matrix-free Jacobians, no preconditioning -snes_mf
- \$./ex15 -da_refine 1 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 2 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 3 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 4 -snes_mf -snes_monitor -ksp_converged_reason

- Start with p = 2 (standard Laplacian), define only residuals
- Matrix-free Jacobians, no preconditioning -snes_mf
- \$./ex15 -da_refine 1 -snes_mf -snes_monitor -ksp_converged_reason 0 SNES Function norm 9.324361041196e-01 Linear solve converged due to CONVERCED_RTOL iterations 7 1 SNES Function norm 4.534365556764e-09

CONVERGED_FNORM_RELATIVE Number of nonlinear iterations = 1

- \$./pbratu -da_refine 2 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 3 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 4 -snes_mf -snes_monitor -ksp_converged_reason

(日)

- Start with p = 2 (standard Laplacian), define only residuals
- Matrix-free Jacobians, no preconditioning -snes_mf
- \$./ex15 -da_refine 1 -snes_mf -snes_monitor -ksp_converged_reason

\$./pbratu -da_refine 2 -snes_mf -snes_monitor -ksp_converged_reason 0 SNES Function norm 5.363535697720e-01 Linear solve converged due to CONVERGED_RTOL iterations 18 1 SNES Function norm 1.276738526722e-06 Linear solve converged due to CONVERGED_RTOL iterations 18 2 SNES Function norm 1.263046904535e-11

CONVERGED_FNORM_RELATIVE Number of nonlinear iterations = 2

- \$./pbratu -da_refine 3 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 4 -snes_mf -snes_monitor -ksp_converged_reason

(日)

- Start with p = 2 (standard Laplacian), define only residuals
- Matrix-free Jacobians, no preconditioning -snes_mf
- \$./ex15 -da_refine 1 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 2 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 3 -snes_mf -snes_monitor -ksp_converged_reason 0 SNES Function norm 2.820917170607e-01 Linear solve converged due to CONVERGED_RTOL iterations 42 1 SNES Function norm 2.782839451653e-06 Linear solve converged due to CONVERGED_RTOL iterations 45 2 SNES Function norm 2.682642095006e-11

CONVERGED_FNORM_RELATIVE Number of nonlinear iterations = 2

\$./pbratu -da_refine 4 -snes_mf -snes_monitor -ksp_converged_reason

- Start with p = 2 (standard Laplacian), define only residuals
- Matrix-free Jacobians, no preconditioning -snes_mf
- \$./ex15 -da_refine 1 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 2 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 3 -snes_mf -snes_monitor -ksp_converged_reason

\$./pbratu -da_refine 4 -snes_mf -snes_monitor -ksp_converged_reason 0 SNES Function norm 1.441189193029e-01 Linear solve converged due to CONVERGED_RTOL iterations 101 1 SNES Function norm 1.409860069506e-06 Linear solve converged due to CONVERGED_RTOL iterations 154 2 SNES Function norm 1.390912345257e-11

CONVERGED_FNORM_RELATIVE Number of nonlinear iterations = 2

- Start with p = 2 (standard Laplacian), define only residuals
- Matrix-free Jacobians, no preconditioning -snes_mf
- \$./ex15 -da_refine 1 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 2 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 3 -snes_mf -snes_monitor -ksp_converged_reason
- \$./pbratu -da_refine 4 -snes_mf -snes_monitor -ksp_converged_reason 0 SNES Function norm 1.441189193029e-01 Linear solve converged due to CONVERGED_RTOL iterations 101 1 SNES Function norm 1.409860069506e-06 Linear solve converged due to CONVERGED_RTOL iterations 154 2 SNES Function norm 1.390912345257e-11

CONVERGED_FNORM_RELATIVE Number of nonlinear iterations = 2

The number of iterations is growing with grid refinement.

Experimenting with algorithms

- -pc_type asm -sub_pc_type lu
- -pc_type gamg -pc_gamg_agg_nsmooths 1
- -jtype PICARD -pc_type lu
- -snes_mf_operator -jtype PICARD -pc_type ml

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Barriers

- Krylov method: (iteration count) $\sim \sqrt{\text{condition number}}$
- Elliptic ill-conditioning
 - $\kappa(A) \sim h^{-2}$ for second order elliptic problems
 - Asymptotics not improved for standard methods:
 -pc_type_jacobj_-pc_type_sor_-pc_type_j
 - -pc_type jacobi, -pc_type sor, -pc_type ilu
 - ▶ 1-level Domain Decomposition: $\kappa \sim H^{-2}\phi(H/h)$ -pc_type bjacobi, -pc_type asm
 - Multilevel/multigrid: $\kappa \sim 1$
 - -pc_type gamg, -pc_type ml, -pc_type hypre,
 - -pc_type mg
- Heterogeneity
 - Conditioning proportional to maximum material contrast
 - \blacktriangleright In friendly circumstances, a local preconditioner restores $\sim h^{-2}$ ill-conditioning
 - Coarse approximations and subdomain transmission conditions become difficult

- Fine grids necessary because of heterogeneity
- Coarse grid must accurately represent long-range coupling

Outline

Role of implicit solvers

Common methods and algorithmic barriers

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Failure modes and troubleshooting

Coupling approaches

Stokes problems

Performance considerations

Low energy modes of preconditioned operator $P^{-1}A$

 2×2 checkerboard elasticity problem, Neumann condition on right boundary

Low energy modes of preconditioned operator $P^{-1}A$

 2×2 checkerboard elasticity problem, Neumann condition on right boundary

Low energy modes of preconditioned operator $P^{-1}A$

 2×2 checkerboard elasticity problem, Neumann condition on right boundary

Low energy modes of preconditioned operator $P^{-1}A$

 2×2 checkerboard elasticity problem, Neumann condition on right boundary

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへの

Low energy modes of preconditioned operator $P^{-1}A$

 2×2 checkerboard elasticity problem, Neumann condition on right boundary

With geometric MG, Galerkin coarse operators, unstable Chebychev smoother

Linear solver convergence problems²

- Watch the true residual -ksp_monitor_true_residual
- Make the problem small and create an environment to test rapidly
- Are boundary conditions correct? -pc_type svd -pc_svd_monitor and -pc_type lu
- Is the system singular? Known nullspace?
- Is the condition number reasonable? -ksp_monitor_singular_value
- Compare preconditioned residual to true residual (unstable preconditioner)
- Is GMRES restart a problem? -ksp_gmres_restart 300
- Is preconditioner nonlinear? -ksp_type gcr, -ksp_type fgmres
- Geometric multigrid with rediscretization: boundary condition scaling.

 $^{^{2} \}texttt{http://scicomp.stackexchange.com/questions/513} \bigcirc \texttt{A} \leftarrow \texttt{B} \leftarrow$

Nonlinear solver convergence problems³

Is the Jacobian assembled correctly?

- -snes_mf_operator -pc_type lu
- -snes_type test or -snes_compare_explicit
- -snes_mf_type ds
- Is the linear system solved accurately enough?
- Does the linear system become singular?
- Is there a bug in residual evaluation?
- Is the residual function discontinuous?
- -snes_linesearch_monitor
- ./configure --with-precision=__float128

 ${}^{3} \texttt{http://scicomp.stackexchange.com/questions/30} \leftarrow \texttt{P} \leftarrow \texttt{P}$

Outline

Role of implicit solvers

Common methods and algorithmic barriers

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Failure modes and troubleshooting

Coupling approaches

Stokes problems

Performance considerations

The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid
- X Need to understand local spectral and compatibility properties of the coupled system

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - "parabolization" for stiff waves

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- X Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

MomentumStokes Pressure

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲□▶▲□▶▲□▶▲□▶ □ のQで

- matrix-free anywhere
- multiple levels of nesting

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

Boundary Layer

Ocean

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

- matrix-free anywhere
- multiple levels of nesting

Splitting for Multiphysics

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

► Relaxation: -pc_fieldsplit_type [additive,multiplicative,symmetric_multiplicative] $\begin{bmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{bmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ 1 \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{bmatrix}^{-1} \begin{bmatrix} A \\ C \end{bmatrix}^{-1} \begin{pmatrix} A \\ D \end{pmatrix}^{-1} \begin{pmatrix} A \\$

Gauss-Seidel inspired, works when fields are loosely coupled
 Factorization: -pc_fieldsplit_type schur

$$\begin{bmatrix} A & B \\ & S \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ CA^{-1} & 1 \end{bmatrix}^{-1}, \qquad S = D - CA^{-1}B$$

- robust (exact factorization), can often drop lower block
- how to precondition S which is usually dense?
 - interpret as differential operators, use approximate commutators

Work in Split Local space, matrix data structures reside in any space.

Multiphysics Assembly Code: Jacobians

```
FormJacobian_Coupled(SNES snes,Vec X,Mat J,Mat B,...) {
    // Access components as for residuals
    MatGetLocalSubMatrix(B,is[0],is[0],&Buu);
    MatGetLocalSubMatrix(B,is[0],is[1],&Buk);
    MatGetLocalSubMatrix(B,is[1],is[0],&Bku);
    MatGetLocalSubMatrix(B,is[1],is[1],&Bkk);
    FormJacobianLocal_U(user,&infou,u,k,Buu); // single physics
    FormJacobianLocal_UK(user,&infou,&infok,u,k,Buk); // coupling
    FormJacobianLocal_KU(user,&infou,&infok,u,k,Bku); // single physics
    MatRestoreLocalSubMatrix(B,is[0],is[0],&Buu);
    // More restores
```

- Assembly code is independent of matrix format
- Single-physics code is used unmodified for coupled problem
- No-copy fieldsplit:

```
-pack_dm_mat_type nest -pc_type fieldsplit
```

Coupled direct solve:

-pack_dm_mat_type aij -pc_type lu -pc_factor_mat_solver_package mumps

Outline

Role of implicit solvers

Common methods and algorithmic barriers

Failure modes and troubleshooting

Coupling approaches

Stokes problems

Performance considerations

▲□▶▲□▶▲□▶▲□▶ = つへぐ

The common block preconditioners for Stokes require only options:

The Stokes System

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The common block preconditioners for Stokes require only options:

-fieldsplit_1_ksp_type preonly

 $\begin{array}{c} \mathsf{PC} \\ \begin{pmatrix} \hat{A} & 0 \\ 0 & I \end{pmatrix} \end{array}$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Cohouet and Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, 1988.

The common block preconditioners for Stokes require only options:

```
-pc_type fieldsplit
-pc_fieldsplit_type
multiplicative
```

```
-fieldsplit_0_pc_type hypre
```

- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type jacobi
- -fieldsplit_1_ksp_type preonly

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_fieldsplit_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres
- -pc_fieldsplit_schur_factorization_type diag

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2008.

Olshanskii, Peters, and Reusken, Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations, 2006.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_fieldsplit_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

 $\begin{array}{c}
\mathsf{PC} \\
\begin{pmatrix} \hat{A} & 0 \\
B^T & \hat{S} \\
\end{array}$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

-pc_fieldsplit_schur_factorization_type lower

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2008.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_fieldsplit_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

 $\begin{array}{c} \mathsf{PC} \\ \begin{pmatrix} \hat{A} & B \\ 0 & \hat{S} \end{pmatrix} \end{array}$

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

-pc_fieldsplit_schur_factorization_type upper

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2008.

The common block preconditioners for Stokes require only options:

```
-pc_type fieldsplit
```

-pc_fieldsplit_type schur

-fieldsplit_0_pc_type gamg

-fieldsplit_0_ksp_type preonly

```
-fieldsplit_1_pc_type lsc
```

-fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type upper

May and Moresi, *Preconditioned iterative methods for Stokes flow problems arising in computational geodynamics*, 2008.

Kay, Loghin and Wathen, A Preconditioner for the Steady-State N-S Equations, 2002. Elman, Howle, Shadid, Shuttleworth, and Tuminaro, *Block preconditioners based on approximate commutators*, 2006.

· B Ŷ' SC

The common block preconditioners for Stokes require only options:

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

All block preconditioners can be embedded in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin

System on each Coarse Level $R\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix} P$

All block preconditioners can be *embedded* in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type additive

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type jacobi
-mg_levels_fieldsplit_1_ksp_type preonly

Smoother PC $\begin{pmatrix} \hat{A} & 0 \\ 0 & I \end{pmatrix}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

All block preconditioners can be *embedded* in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type
multiplicative

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type jacobi
-mg_levels_fieldsplit_1_ksp_type preonly

Smoother PC $\begin{pmatrix} \hat{A} & B \\ 0 & I \end{pmatrix}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

All block preconditioners can be *embedded* in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none
-mg_levels_fieldsplit_1_ksp_type minres

Smoother PC $\begin{pmatrix} \hat{A} & 0 \\ 0 & -\hat{S} \end{pmatrix}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

-mg_levels_pc_fieldsplit_schur_factorization_type diag

All block preconditioners can be *embedded* in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none
-mg_levels_fieldsplit_1_ksp_type minres

Smoother PC $\begin{pmatrix} \hat{A} & 0 \\ B^T & \hat{S} \end{pmatrix}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

-mg_levels_pc_fieldsplit_schur_factorization_type lower

All block preconditioners can be *embedded* in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type none
-mg_levels_fieldsplit_1_ksp_type minres

Smoother PC $\begin{pmatrix} \hat{A} & B \\ 0 & \hat{S} \end{pmatrix}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

-mg_levels_pc_fieldsplit_schur_factorization_type upper

All block preconditioners can be *embedded* in MG using only options:

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur

-mg_levels_fieldsplit_0_pc_type sor -mg_levels_fieldsplit_0_ksp_type preonly

-mg_levels_fieldsplit_1_pc_type lsc
-mg_levels_fieldsplit_1_ksp_type minres

Smoother PC $\begin{pmatrix} \hat{A} & B \\ 0 & \hat{S}_{LSC} \end{pmatrix}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

-mg_levels_pc_fieldsplit_schur_factorization_type upper

Smoothing for saddle point systems

$$\begin{pmatrix} A & B^T \\ B & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- pressure has no self-coupling
- pressure error modes not spectrally separated
- approaches
 - block smoothers (Vanka)
 - amplify fine-grid modes (distributive relaxation)
 - splitting with approximate Schur complement

Vanka block smoothers

- solve pressure-centered cell problems (better for discontinuous pressure)
- \blacktriangleright robust convergence factor ~ 0.3 if coarse grids are accurate
- 1D energy minimizing interpolants easy and effective
- can use assembled sparse matrices, but more efficient without

Changing Associativity: Distributive Smoothing

$$PAx = Pb$$
 $APy = b, x = Py$

- Normal Preconditioning: make PA or AP well-conditioned
- Alternative: amplify high-frequency modes
 - Multigrid smoothers only need to relax high-frequency modes
 - Easier to do when spectrally separated: h-ellipticity
 - pointwise smoothers (Gauss-Seidel) and polynomial/multistage methods
 - Mechanics: form the product PA or AP and apply "normal" method
 - Example (Stokes)

$$A \sim \begin{pmatrix} -\nabla^2 & \nabla \\ \nabla \cdot & 0 \end{pmatrix} \quad P \sim \begin{pmatrix} 1 & -\nabla \\ 0 & -\nabla^2 \end{pmatrix} \quad AP \sim \begin{pmatrix} -\nabla^2 & ``0" \\ \nabla \cdot & -\nabla^2 \end{pmatrix}$$

 Convergence factor 0.32 (as good as Laplace) for smooth problems

Coupled MG for Stokes, split smoothers

$$J = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix}$$
$$P_{\text{smooth}} = \begin{pmatrix} A_{\text{SOR}} & 0 \\ B & M \end{pmatrix}$$

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

æ

Outline

Role of implicit solvers

Common methods and algorithmic barriers

Failure modes and troubleshooting

Coupling approaches

Stokes problems

Performance considerations

▲□▶▲□▶▲□▶▲□▶ = つへぐ
Profiling basics

- Get the math right
 - Choose an algorithm that gives robust iteration counts and really converges
- Look at where the time is spent
 - Run with -log_summary and look at events
 - VecNorm, VecDot measures latency
 - MatMult measures neighbor exchange and memory bandwidth

- PCSetUp factorization, aggregation, matrix-matrix products, ...
- PCApply V-cycles, triangular solves, ...
- KSPSolve linear solve
- SNESFunctionEval residual evaluation (user code)
- SNESJacobianEval matrix assembly (user code)

Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%</p>

Hardware Arithmetic Intensity

Operation	Arithmetic Intensity (flops/B)
Sparse matrix-vector product	1/6
Dense matrix-vector product	1/4
Unassembled matrix-vector product	pprox 8
High-order residual evaluation	> 5

Processor	BW (GB/s)	Peak (GF/s)	Balanced AI (F/B)
E5-2670 8-core	35	166	4.7
Magny Cours 16-core	49	281	5.7
Blue Gene/Q node	43	205	4.8
Tesla M2090	120	665	5.5
Kepler K20Xm	160	1310	8.2
Xeon Phi	150	1248	8.3

Quasi-Newton revisited: ameliorating setup costs

		<u> </u>			
Lag	FunctionEva	I JacobianEva	I PCSetUp	PCApply	
1 bt	12	8	8	31	pseudo-plastic
1 cp	31	6	6	24	rheology
2 bt		— diverg	ed —		meenegy
2 cp	41	4	4	35	-snes_type qn
3 ср	50	4	4	44	-snes_qn_scale_type
 Jacobian-free Newton-Krylov with lagged preconditioner 					r jacobian
Lag	FunctionEval	JacobianEval	PCSetUp	PCApply	•
1 bt	23	11	11	31	
2 bt	48	4	4	36	
3 bt	64	3	3	52	
4 bt	87	3	3	75	
 Limited-memory Quasi-Newton/BFGS with lagged solve 				e for H_0	
Resta	rt H ₀	FunctionEval	JacobianEval	PCSetUp	PCApply
1 cp	10^{-5}	17	4	4	35
1 cp	preonly	21	5	5	10
3 ср	10^{-5}	21	3	3	43
3 cp	preonly	23	3	3	11
6 cp	10-5	29	2	2	60
6 cp	preonly	29	2	2	14

Newton-Krylov with analytic Jacobian

Network latency

MPI_Allreduce is slow at large scale

- True on many machines, not on Blue Gene (~ 100 μs)
- Bottleneck for Krylov methods
- Pipelining allows overlap, uses MPI_Iallreduce from MPI-3
 -ksp_type pgmres, -ksp_type pipecg, -ksp_type pipecr

Coarse grid solves for multigrid

- Need to restrict active processor set
- Coarse levels have similar cost to finer levels
- Aggressive coarsening more important than tight iteration count

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Additive multigrid possible, but less robust

Outlook

- PETSc http://mcs.anl.gov/petsc
- Trilinos http://trilinos.sandia.gov
- Think about solution algorithms when designing discretization
- Learn how to evaluate solver quality and experiment
- Expect the best method to change with problem instance and machine

Contact

- > petsc-maint@mcs.anl.gov
- http://lists.mcs.anl.gov/pipermail/petsc-users/

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <