
Sharing Thread Pools and Caches for Inter-library
Composition and Multicore Performance

Jed Brown, Shrirang Abhyankar, Barry Smith

Mathematics and Computer Science Division, Argonne National Laboratory

SIAM CSE, 2013-02-28



I Parallel computing used to be about computing.
I It’s increasingly about data movement.



I Parallel computing used to be about computing.
I It’s increasingly about data movement.



Libraries and threads

I Purpose of threads
I Reduce memory usage for executable code and shared/global

data structures
I Reduce resource contention (network, filesystem)
I Encourage cache and bandwidth sharing

I Different ways to use threads
I Large dense linear algebra: use theads internally. User only

interacts with serial interface.
I OMP parallel at main and shared nothing by default.
I MPI_Comm_split_type() and MPI_Win_allocate_shared()

I Competing standards: OpenMP, TBB, Pthreads, OpenCL, . . .
I Targeted at applications, not libraries
I Poor support for sharing

I Unfriendly to require MPI_THREAD_MULTIPLE



Maintaining libraries

I PETSc developers receive about 100 user messages per day
I Configuration/installation (with broken environment)
I API (mis)usage
I Understanding performance/variability
I Solver convergence, selection of methods, and

I > 10% of PETSc is pure input validation and debuggability
I Diagnose bugs in user code over email from our error messages
I Valgrind-like memory tracing and sentinels, explicit stack for signal

handlers, pointer testing
I Compiled out in optimized builds

I 3% of PETSc is profiling/performance diagnostics

I Memory-related performance problems are difficult to debug

I Thread placement and affinity is fragile



Maintaining libraries

I PETSc developers receive about 100 user messages per day
I Configuration/installation (with broken environment)
I API (mis)usage
I Understanding performance/variability
I Solver convergence, selection of methods, and

I > 10% of PETSc is pure input validation and debuggability
I Diagnose bugs in user code over email from our error messages
I Valgrind-like memory tracing and sentinels, explicit stack for signal

handlers, pointer testing
I Compiled out in optimized builds

I 3% of PETSc is profiling/performance diagnostics

I Memory-related performance problems are difficult to debug

I Thread placement and affinity is fragile



Maintaining libraries

I PETSc developers receive about 100 user messages per day
I Configuration/installation (with broken environment)
I API (mis)usage
I Understanding performance/variability
I Solver convergence, selection of methods, and

I > 10% of PETSc is pure input validation and debuggability
I Diagnose bugs in user code over email from our error messages
I Valgrind-like memory tracing and sentinels, explicit stack for signal

handlers, pointer testing
I Compiled out in optimized builds

I 3% of PETSc is profiling/performance diagnostics

I Memory-related performance problems are difficult to debug

I Thread placement and affinity is fragile



Virtual addressing and “first touch”

I Virtual memory is unavoidable for NUMA with shared memory
programming.

I Can speculate that Blue Gene/Q is UMA because of TLB allergies
(preference for offset-mapped shared memory)

I Most systems with virtual memory do not find physical pages
when you call malloc().

I The kernel finds physical pages when you trigger a page fault,
usually “close to” the thread causing the page fault.

I cache and TLB information (2):
0x5a: data TLB: 2M/4M pages, 4-way, 32 entries
0x03: data TLB: 4K pages, 4-way, 64 entries

I Inspecting or changing location of physical pages is not portable
(hwloc does the best they can).

I Implicitness is bad for libraries and bad for support



Virtual addressing and “first touch”

I Virtual memory is unavoidable for NUMA with shared memory
programming.

I Can speculate that Blue Gene/Q is UMA because of TLB allergies
(preference for offset-mapped shared memory)

I Most systems with virtual memory do not find physical pages
when you call malloc().

I The kernel finds physical pages when you trigger a page fault,
usually “close to” the thread causing the page fault.

I cache and TLB information (2):
0x5a: data TLB: 2M/4M pages, 4-way, 32 entries
0x03: data TLB: 4K pages, 4-way, 64 entries

I Inspecting or changing location of physical pages is not portable
(hwloc does the best they can).

I Implicitness is bad for libraries and bad for support



What can go wrong?

I Memory performance
depends on socket
connectivity

I Unbalanced prior
allocations

I Cache coherence costs
(e.g., STREAM at 50% of
bus bandwidth)

I Thread can migrate away
I Linux-2.6.38 has

transparent huge pages
(2M/4M versus 4K)

I libhugetlbfs not
widely installed



With all these problems, why use common allocation?

I Data structures are simpler, smaller, and share more easily.
I Consider sparse matrix-matrix multiply

I Cache/bandwidth sharing are key reasons for threads in the first
place

I Compatibility with user expectation

I Ability to mix optimized threaded code with legacy unthreaded

I Separate allocation is sometimes feasible and can work very well



Speed of light and cost of synchronization

I Fundamental lower bound: several clock cycles for light to make
round trip across an Ivy Bridge die

I

Operation (16-CPU X5550 Nehalem) Time (ns) Clocks

Clock period (two packed FP instructions) 0.4 1
Best case CAS 12.2 33.8
Best-case lock/unlock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache-miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
CAS cache miss (off-socket) 95.9 266.4

I From Paul McKenney, see
http://www.rdrop.com/users/paulmck/RCU/

http://www.rdrop.com/users/paulmck/RCU/


Synchronization mechanisms

I OpenMP over-synchronizes by default

I OMP nowait clause is global and of limited utility

I OMP critical is fundamentally not scalable

I OMP atomic cause excessive cache-line bouncing

I Collectives like allreduce and scan can be scalable

I Mechanisms like RCU (Read-Copy Update) allow safe,
mostly-unstructured asynchronous shared mutable state

I TBB synchronization is either non-scalable (e.g., mutexes) or
tighly coupled to tasks



Will Transactional Memory save the day?

I TM is good for large scattered writes over data structures that
cannot be partitioned.

I TM is expensive relative to locks for small writes

I Implementations and performance is highly variable

I Non-idempotent operations may be applied multiple times on
retry

I McKenney, Michael, Triplett, Walpole (2010) “Why the grass may
not be greener on the other side: A comparison of locking versus
transactional memory”.



PETSc: “E” is for Extensible

I Ideal: anything that can be developed in the library can also be
developed as a plugin.

I Matrix and vector formats
I Preconditioners
I Krylov methods

I High-level plugins do not want to think about threads

I Low-level plugins need low-level access

I Ability to call internal functions from threads



Thread Communicator design goals

I Run-time choice of common threading environments

I Ability to split communicators

I Non-blocking job submission of collective jobs (perhaps on
subcomms)

I Thread collectives like reductions and scans decoupled from
tasks

I Collective asynchronous and synchronous jobs

I Avoid over-synchronization: hazard pointers, RCU (unfortunately
a patent minefield for non-LGPL)

I Library isolation, attribute caching



PetscThreadComm

I Attached to MPI_Comm which is used in existing interfaces
I Split and dup based on topology

I runs asynchronously if thread rank 0 is not in comm
I Asynchronous reductions:

void VecDot_k(int thread_id,Vec X,Vec Y,PetscThreadReduction red) {
int rstart,rend;
const Scalar *x,*y;
VecGetThreadOwnershipRange(X,thread_id,&rstart,&rend);
VecGetArrayRead(X,&x);
VecGetArrayRead(Y,&y);
Scalar a = BLASdot_(x[rstart:rstart+rend],y[rstart:rstart+rend]);
PetscThreadReductionPost_k(thread_id,red,&a);

}
void VecDot(Vec X,Vec Y,Scalar *a) {

...
PetscCommRunKernel3(X->comm,VecDot_k,X,Y,red);
PetscThreadReductionEnd(red,a); // or PetscThreadReductionEnd_k()

}

I Can also call VecDot_k() from another kernel



Expressing memory layout

I PETSc vectors and matrices have PetscLayout
I Provides sufficient local view of distribution across distributed

memory

I Now includes thread ownership ranges
I Implementations can extend to richer descriptions

I Grouping and interlacing



Hardware Arithmetic Intensity

Operation Arithmetic Intensity (flops/B)

Sparse matrix-vector product 1/6
Dense matrix-vector product 1/4
Unassembled matrix-vector product ≈ 8
High-order residual evaluation > 5

Processor BW (GB/s) Peak (GF/s) Balanced AI (F/B)

E5-2670 8-core 35 166 4.7
Magny Cours 16-core 49 281 5.7
Blue Gene/Q node 43 205 4.8
Tesla M2090 120 665 5.5
Kepler K20Xm 160 1310 8.2
Xeon Phi 150 1248 8.3



Performance of assembled versus unassembled

1 2 3 4 5 6 7
polynomial order

102

103

104

by
te

s/
re

su
lt

1 2 3 4 5 6 7
polynomial order

102

103

104

flo
ps

/re
su

lt

tensor b = 1
tensor b = 3
tensor b = 5
assembled b = 1
assembled b = 3
assembled b = 5

I High order Jacobian stored unassembled using coefficients at
quadrature points, can use local AD

I Choose approximation order at run-time, independent for each field
I Precondition high order using assembled lowest order method
I Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%



Reducing memory bandwidth

I Sweep through “coarse” grid with moving window

I Zoom in on new slab, construct fine grid “window” in-cache

I Interpolate to new fine grid, apply pipelined smoother (s-step)

I Compute residual, accumulate restriction of state and residual
into coarse grid, expire slab from window



Arithmetic intensity of sweeping visit

I Assume 3D cell-centered, 7-point stencil

I 14 flops/cell for second order interpolation

I ≥ 15 flops/cell for fine-grid residual or point smoother

I 2 flops/cell to enforce coarse-grid compatibility

I 2 flops/cell for plane restriction

I assume coarse grid points are reused in cache

I Fused visit reads uH and writes ÎH
h uh and IH

h rh

I Arithmetic Intensity

interp︷︸︸︷
15 +

compatible relaxation︷ ︸︸ ︷
2 · (15+2) +

smooth︷︸︸︷
2 ·15+

residual︷︸︸︷
15 +

restrict︷︸︸︷
2

3 ·sizeof(scalar)/ 23︸︷︷︸
coarsening

& 30 (1)

I Still & 10 with non-compressible fine-grid forcing



Outlook
I PetscThreadComm with pthreads lower overhead than OpenMP

I Weaker synchronization, fewer memory fences

I Enable better reuse of “kernels”
I Thread organization more explicit, can cross library boundaries
I Performance and correctness debuggability via email/error

messages
I Allow transition from calling via outer interfaces to calling from

threads
I Matrix-free methods reduce bandwidth requirements

I can simplify memory management, but the user is no longer
isolated from solvers

I Exotic algorithms can move us back to FPU-limited
I Don’t have to worry so much about memory
I Such algorithms are often cache-intensive so need to share

I Portable Hardware Locality
http://open-mpi.org/projects/hwloc

I Concurrency Kit http://concurrencykit.org

http://open-mpi.org/projects/hwloc
http://concurrencykit.org

