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Why do we need scalable solvers?

In the coming years, results of earth system models are expected to have an increasing influence on policy
decisions. Qualitative results are not sufficient in this application so high-accuracy analysis of continental
and global scale dynamics becomes critical. Such analysis requires extremely large problem sizes and
stability constraints necessitate the use of implicit methods. The analysis phase involves a “physics”
component which naturally requires O(N) work where N is the number of unknowns and a “solver”
component which is often superlinear (e.g. O(N3/2)) and will dominate the runtime for large problems,
perhaps even making the target-resolution unattainable. A solver is algorithmically scalable when work
is (nearly) O(N) and has optimal parallel scalability when runtime is (nearly) O(N/P ) where P is the
number of processors. The present work focuses on algorithmic scalability using components that are
known to have good parallel scalability.

Preconditioning matters

The direct solver scales very poorly. Algebraic multigrid fails
and ILU is not satisfactory when applied directly to the in-
definite matrix. By contrast, the Schur complement precon-
ditioner exhibits optimal scalability. The last point for each
solver represents the largest problem size that could be solved
in available memory (4GB minus the OS). The Schur com-
plement solver shown only assembles a sparse approximation
of the velocity system so it requires much less storage than
the stable Q2 − Q1 scheme used in the ILU solver.

Fast high order finite elements

Standard finite element methods exhibit algebraic convergence with mesh refinement, but p-refinement
(increasing the polynomial order) can provide exponential convergence, greatly reducing the number of
degrees of freedom required to obtain a given accuracy. Unfortunately, p-refinement normally produces
much denser matrices which are expensive to store, apply, and precondition. An alternative is to p-refine
but apply the Jacobian matrix-free. A preconditioner will need an assembled matrix at some stage, but
it is sufficient to assemble a much sparser matrix based on Q1 (piecewise trilinear) subelements defined
on the nodes of the tensor-product basis. This idea was introduced in [Deville and Mund, 1985] and
spectral equivalence of the Q1 matrix was recently proved in [Kim, 2007]. Since the number of Krylov
iterations is essentially independent of the spectral order, the resulting scheme allows for arbitrary order
approximations at comparable cost to the lowest-order finite element methods.

Unassembled matrix application on modern CPU architectures

Sparse matrix-vector products are an essential kernel of iterative linear algebra, but the floating point per-
formance is very poor due to memory bandwidth limitations and irregular access. Current generation Intel
and AMD processors achieve an upper limit between 4 and 20% of peak FPU throughput after extensive
architecture-specific tuning [Oliker et al., 2008]. Significant improvements in floating point performance
are not possible without changing the memory access pattern. High order tensor-product methods circum-
vent the memory bottleneck by changing the computational kernel from irregular access with significant
metadata to dense tensor product operations on contiguous blocks of memory which fit in Level 1 cache.
The amount of memory required to store the tensor-product representation is independent of the spectral
order and less than a sparse matrix for first-order elements. In addition, it can be computed at little or
no extra cost during residual evaluations. A naive implementation obtains several times the floating point
performance of highly tuned sparse matrix-vector kernels.

Cost compared to Q2 low-order finite elements

Event Dohp Q5 Libmesh Q2 Q1

Assembly 16.8 26.4 17.1
MatMult 26.7 28.3 5.08
PCSetUp 8.3 14.7 8.47
PCApply 25.8 88.4 13.8
KSPSolve 58.3 110.7 22.3

Memory (MB) 1194 2300 1044

GMRES its 29 21 12

Timing for N = 1013

Assembling the actual Jacobian is only cost-effective for linear (Q1) elements. When a stable basis or
higher order accuracy is desired, the dual order method (Dohp) requires much less storage and provides
significantly faster runtimes. An adaptive analysis using this method may choose the polynomial order
based solely on local smoothness properties since there is negligible CPU or memory penalty for high
order.

Power-law fluids

The steady state Stokes system for power-law rheology is: find (u, p) ∈ VD × P = H1

D(Ω) × L2(Ω) such
that

∫

Ω

[

ηDv :Du − p∇ · v − q∇ · u − v · f
]

+

∫

Γ

v · (p1− ηDu) · n = 0 (1)

for all (v, q) ∈ V0 × P where Du = 1

2

(

∇u + (∇u)T ) is the symmetric gradient, γ(Du) = 1

2
Du :Du is the

second invariant and

η(γ) =
(

(ǫ2 + γ)/γ0

)
1−n

2n (2)

is effective viscosity with regularization ǫ and Glen exponent n ≈ 3. The boundary integral is normally
modified to enforce a boundary condition, but certain outflow conditions [Papanastasiou et al., 1992] in-
tegrate the term as it appears. The space VD has inhomogeneous trace on Dirichlet boundaries and
V0 is the corresponding homogeneous space. On slip boundaries, only the tangent component is con-
strained, while the boundary integral enforces the slip relation. The regularization ǫ has units of strain
rate and prevents viscosity from becoming infinite in the zero strain limit. Such regularization is phys-
ical [Goldsby and Kohlstedt, 2001] but there is no consensus value. The performance of the nonlinear
solver as ǫ → 0 is investigated in the Globalization section.

When solving (1) with a Newton method, we solve discrete forms of: find (u, p) ∈ V0 × P such that

∫

Ω

[

ηDv :Du + η′(Dv :Dũ)(Dũ :Du) − p∇ · v − q∇ · u
]

= −

∫

Ω

vF (ũ)

for all (v, q) ∈ V0 × P . In matrix notation,

J(ũ)x =

[

A(ũ) BT

B

] (

u
p

)

=

(

−F (ũ)
0

)

where the viscous contribution A is symmetric positive definite and B is negative divergence. Since J is
indefinite, standard preconditioners such as multigrid and domain decomposition methods are ineffective.
While ILU fairs slightly better, the convergence rates are disappointing. Effective preconditioning of J
uses a block factorization of the form

J =

[

A BT

B

]

=

[

1
BA−1 1

] [

A BT

S

]

=

[

A
B S

] [

1 A−1BT

1

]

(3)

where S = −BA−1BT is the Schur complement which is dense, hence prohibitively expensive to form. A
general class of indefinite preconditioners is obtained by replacing each occurence of A−1 with a choice of
standard preconditioner, possibly dropping either or both off-diagonal terms, and choosing a preconditioner
for S. Classical solvers for incompressible flow such as the Uzawa and SIMPLE families, as well as recent
block preconditioners correspond to particular choices [Elman et al., 2008]. The heuristic argument

S ∼ ∇ ·∆−1∇ ≈ ∆−1(∇ · ∇) = ∆−1∆ = 1

suggests that S is similar to the identity, hence a mass matrix scaled by η−1 should be an effective
preconditioner for S.

Indefinite preconditioning choices

Effective preconditioning of S requires assembly of the scaled mass matrix Mp, but it may either be used
directly or used to precondition iterations directly on S. Iterating directly on S moves work into the
inner loop, but it is not cost-effective to fully converge an iteration on S. Early termination of a Krylov
iteration does not provide a linear operator, but a fixed number of stationary iterations does. For the
constant viscosity linear problem, we find self-preconditioning of S with Chebychev or Krylov iterations
can reduce solve time, but it requires that the full factorization (3) is used and that the outer Krylov
method is FGMRES. When the lower block is dropped, it appears that inner iterations do not help.

The self-preconditioned variants, GMRES and
Chebyshev, have outer iteration counts of 2 or
3 for all problem sizes when the full factoriza-
tion is used. The variants with no inner iter-
ation, Linear and Linear+, were faster when
only the upper block was used. Linear+ pro-
vides a stronger preconditioner for A by using
3 Richardson iterations preconditioned by a V-
cycle of AMG applied to the Q1 preconditioning
matrix Ap. There appears to be no cost-effective
middle ground, either everything is left to the
outer Krylov solver or a fairly strong inner solve
must be done.
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Inverse problems and optimization

It is typically not feasible to directly measure properties within, or at the base of, an ice sheet. These
properties affect the flow to such an extent that forward modeling with poorly known boundary and interior
data is dubious at best. Determining these properties from available data is the object of inverse methods.
Traditional methods such as Bayesian inversion [Tarantola, 2005, Raymond, 2007] rely on assembling and
factoring a dense N × N matrix where N is the size of the parameter space. This requires O(N3)
flops and O(N2) memory which is not feasible for moderate problem sizes N ≈ 106 on today’s clusters.
To circumvent dense matrices, we pose inverse problems as PDE-constrained optimization, for which
scalable methods have been developed [Biros and Ghattas, 2005]. The key to these methods is scalable
preconditioning of the resulting indefinite linear systems.

PDE-constrained optimization: Lagrange-Newton-Krylov-Schur

We consider problems of the form

min
xs,xd

f(xs, xd) subject to c(xs, xd) = 0

where f is the objective, c is a partial differential equation, xs ∈ V is a function in the state space,
and xd ∈ Vd is a function in the design space. An example in glaciology would have xs as combined
velocity and pressure while xd is a distributed basal slipperiness or flow-law parameter like temperature
or anisotropy which we would like to estimate. For an inverse problem, the objective has the form

f =
1

2
‖xd‖

2
+

1

2

∫

(xs − x̂s)
2 dσ

where ‖·‖ is a seminorm on the design space, x̂s are observations and σ is an (often discrete) measure on
the misfit. In many cases, the objective and seminorm can be chosen so as to be equivalent to a given
Bayesian formulation.

We enforce constraints by introducing adjoint variables xa ∈ V0 as Lagrange multipliers. After integration
by parts, the PDE is equivalent to a weak form b(xd; xa, xs) = 0 for all xa. We define the Lagrangian

L(xs, xa, xd) =
1

2
‖xd‖

2 +
1

2

∫

(xs − x̂s)
2 dσ + b(xd; xa, xs)

which must be stationary for optimality, leading to a nonlinear system of equations

F (x) = ∇L(xs, xa, xd) = 0 (4)

which is discretized and solved using Newton methods. At each Newton iteration, the linear system

J(x̃)x =





Wss AT
s Wsd

As 0 Ad

Wds AT
d Wdd









xs

xa

xd



 = −





Fs

Fa

Fd



 = −F (x̃)

must be solved. As is the discrete form of ∂xs
b(x̃d; ·, x̃s), the Jacobian of the PDE operator, which

is independent of the adjoint variable. The matrix J(x̃) is indefinite and very poorly conditioned so
standard preconditioners are not effective, hence we use the factorization





Wss AT
s Wsd

As 0 Ad

Wds AT
d Wdd



 =





1
1

1









1
WssA

−1
s 1

WdsA
−1
s AT

d A−T
s 1









As Ad

AT
s R

S





where
R = Wsd − WssA

−1

s Ad and S = Wdd − AT
d A−T

s R − WdsA
−1

s Ad

to construct a preconditioner. S is known as the reduced Hessian and appears in popular optimization
methods such as Quasi-Newton Reduced space Sequential Quadratic Programming (QN-RSQP). Such
methods require exact PDE solves at each iteration and the number of required iterations scales as the
square root of the condition number of S. By applying the powerful Newton-Krylov machinery directly
to (4), the LNKS method retains quadratic convergence and replaces the PDE solves at each iteration
with preconditioners. A preconditioner for S may be obtained by stationary iteration, BFGS update, or
approximate commutators, the last of which uses problem-specific structure and has proven effective for
other indefinite problems.

Globalization

The constitutive relation (2) becomes highly nonlinear when ǫ → 0 and algebraic globalization such as
line search and trust region methods stagnate. Effective globalization exploits the problem structure by
continuation in the exponent. A continuation with one to three steps was effective even with exponents
larger than n = 5 and with viscosity variation of up to 107. The most effective solver combination used
the [Eisenstat and Walker, 1996] method to adjust linear solve tolerances in a line-search guarded Newton
method where the linear system was solved using LGMRES(30) with block triangular preconditioning,
no inner iterations, and algebraic multigrid preconditioning for A. Assembly of the Q1 preconditioning
matrix for A is quite cheap so lagging the preconditioner was not helpful.



References

[Biros and Ghattas, 2005] Biros, G. and Ghattas, O. (2005). Parallel Lagrange-Newton-Krylov-Schur
methods for PDE constrained optimization. Part I: The Krylov-Schur solver. SIAM Journal on Scientific

Computing, 27(2):687–713.

[Deville and Mund, 1985] Deville, M. and Mund, E. (1985). Chebyshev Pseudospectral Solution of Second-
Order Elliptic Equations with Finite Element Preconditioning. Journal of Computational Physics,
60:517.

[Eisenstat and Walker, 1996] Eisenstat, S. C. and Walker, H. F. (1996). Choosing the forcing terms in an
inexact newton method. SIAM Journal on Scientific Computing, 17(1):16–32.

[Elman et al., 2008] Elman, H., Howle, V., Shadid, J., Shuttleworth, R., and Tuminaro, R. (2008). A
taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-
Stokes equations. Journal of Computational Physics, 227(1):1790–1808.

[Goldsby and Kohlstedt, 2001] Goldsby, D. and Kohlstedt, D. (2001). Superplastic deformation of ice:
Experimental observations. Journal of Geophysical Research, 106(B6):11017–11030.

[Kim, 2007] Kim, S. (2007). Piecewise bilinear preconditioning of high-order finite element methods.
Electronic Transactions on Numerical Analysis, 26:228–242.

[Oliker et al., 2008] Oliker, L., Williams, S., Vudac, R., Shalf, J., Yelick, K., and Demmel, J. (2008).
Multicore optimization of sparse matrix vector multiplication. In SIAM conference on parallel processing

for scientific computing.

[Papanastasiou et al., 1992] Papanastasiou, T., Malamataris, N., and Ellwood, K. (1992). A new outflow
boundary condition. International Journal for Numerical Methods in Fluids, 14(5):587–608.

[Raymond, 2007] Raymond, M. (2007). Estimating basal properties of glaciers and ice streams from surface

measurements. PhD thesis, Swiss Federal Institute of Technology Zurich.

[Tarantola, 2005] Tarantola, A. (2005). Inverse Problem Theory and Methods for Model Parameter Esti-

mation. Society for Industrial Mathematics.


