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Problems with time stepping
The evolution of glaciers and ice sheets occurs on multiple time scales and frequently the slower of
these scales are of great scientific importance. Most models of ice sheets and other climate systems
are based on methods in which crucial components of the physics are treated explicitly. In addition to
reducing the accuracy, time splitting errors produced by such methods may radically change steady
states or mispredict hysteresis. With no measure of coupled residual, it is difficult to determine when
a system has reached steady state rather than just a period of slow evolution. Furthermore, explicit
methods must satisfy stability constraints such that the maximum stable time step is mesh- and
parameter-dependent, preventing weak scalability. If the resolution is increased, it is not sufficient
to simply run on a larger number of processors since more time steps will be required. For non-stiff
hyperbolic equations, it is often desirable to maintain time-accuracy of transport phenomena in which
case the CFL condition cannot be circumvented and explicit methods are highly appropriate. Stiff
hyperbolic, parabolic, and elliptically constrained equations contain time scales that are not of physical
interest and the necessity of explicit methods to resolve these scales prevents scalability.
Implicit methods offer the ability to take time steps independent of mesh resolution, only tracking
the time scales of interest. Additionally, bifurcation analysis is most effective when the Jacobian
evaluated at a steady state is available, allowing, for example, efficient exploration of a branch jump in
multi-dimensional parameter space.

Model equations
Consider the hydrostatic equations (aka. Blatter, Pattyn, “first order”) coupled to surface motion and
erosion
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is the second invariant. A natural boundary condition is applied at the free surface and slip boundary
conditions at the bed with friction coefficient
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where m = 1 is linear (Navier) slip, m = 1/3 is “Weertman sliding”, m→ 0 is the Coulomb limit, and εb
is regularization which is necessary for m < 1.

Solution methods
We use a grid-sequenced Newton-Krylov multigrid to solve the coupled equations. An initial guess for
the Newton iteration is interpolated from a coarser level, the Newton step is solved by a Krylov iteration
preconditioned by geometric multigrid. Our multigrid smoothers use domain decomposition methods
with incomplete factorization in an ordering that allows aggressive coarsening.

Figure: Grid-sequenced nonlinear convergence on a challenging problem. Colored marks indicate
nonlinear residuals, linear residuals are marked with grey ×.

Coupled velocity, surface evolution, and erosion

Figure: A steady-state solution for ISMIP-HOM test C [3] at 10km computed in 19 iterations. The
elevated surface is exaggerated surface height.

Figure: Shear margin for flow over a smooth
bumpy bed with discontinuous sliding parameters
and m = 1/10 nearly plastic yield model.

Figure: Bed profile eroded from a flat bed after
300 ka with test C slipperiness perturbation. Time
steps are 30 ka at this point in the simulation.

Tightly coupled solvers, loosely coupled software
It is desirable to reuse exactly the same “physics” code to run single-physics models, coupled models
using semi-implicit methods, fully implicit coupled models using split preconditioners, and fully implicit
coupled models using monolithic preconditioners. A generic interface has been added to PETSc [1]
with help from Dave May, for which the present code is a prototype client. It provides efficient assembly
with arbitrary subphysics nesting and parallel decomposition, using a natural interface based on “local
submatrices”. When the local submatrix interface is used for assembly, subphysics modules can be
composed without recompilation into arbitrarily deep hierarchies, the hierarchy is flattened by the
library so that performance is not affected.
The matrix format behind the interface can be chosen at runtime and includes a single monolithic
matrix or nested pieces intended for use with field-split preconditioning with no memory or scalability
penalty. Each nested piece can take take advantage of efficient blocked and symmetric storage formats,
offering performance gains of a factor of 2 for sparse matrix kernels and assembly. Matrix-free methods
are fully supported and can be used for some or all physics components and inter-physics couplings.

Parallel Scalability on Blue Gene/P

Figure: Strong scalability on Shaheen for different problem sizes with different coarse level solvers.

Figure: Weak scalability for an entire grid-sequenced solve of a problem with m = 1/5 nonlinear
sliding with discontinuous coefficients over a bumpy bed. Subdomains of size 643.

Discussion

I Steady state solves and long time steps are possible with fully implicit methods.
I Have a robust solver for the pure velocity system, thickness-velocity coupled linear

solve is still hard for large or infinite time steps, need to treat with approximate
Schur-complement methods.

I A similar model using the methods in [2] for 3D Stokes is in development, but
geometric coupling in the ALE formulation is more difficult.

I Arc-length continuation and grid sequencing for coupled problems is underway.
I All software is available as part of the PETSc distribution or from myself.
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