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Abstract. The hydrostatic equations for ice sheet flow offer improved fidelity compared to the
shallow ice approximation and shallow stream approximation (SSA) popular in today’s ice sheet
models. Nevertheless, they present a serious bottleneck because they require the solution of a 3D
nonlinear system, as opposed to the 2D system present in SSA. This 3D system is posed on high-aspect
domains with strong anisotropy and variation in coefficients, making it expensive to solve using
current methods. This paper presents a Newton-Krylov multigrid solver for the hydrostatic equations
that demonstrates textbook multigrid efficiency (an order of magnitude reduction in residual per
iteration and solution of the fine-level system at a small multiple of the cost of a residual evaluation).
Scalability on Blue Gene/P is demonstrated, and the method is compared to various algebraic methods
that are in use or have been proposed as viable approaches.
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1. Introduction. The dynamic response of ice streams and outlet glaciers is
poorly represented using the shallowness assumptions inherent in the present generation
of ice sheet models. Accurate simulation of this response is crucial for prediction
of sea level rise; indeed, the inability of available models, based on the shallow ice
approximation (SIA) [19] and shallow stream approximation (SSA) [22, 33], to simulate
these processes was cited as a major deficiency in the Fourth Assesment Report of the
Intergovernmental Panel on Climate Change [2].

The hydrostatic equations were introduced by [3] as a model of intermediate com-
plexity between the full non-Newtonian Stokes system and the vertically-integrated SIA
and SSA models. A more precise analysis, including the limiting cases of fast and slow
sliding, was given in [28]. Well-posedness was proven in [7], and approximation proper-
ties of finite-element methods were analyzed in [13, 6]. [18] conducted a perturbation
analysis in one horizontal dimension to study validity of different continuum models
including SIA, hydrostatic, and Stokes. [25] contains a model intercomparison using
several implementations of the hydrostatic equations for periodic benchmark problems
with large amplitude basal topography and stickyness variability. The hydrostatic
equations were used for transient simulation in [23] and in 3D models in [24], as well
as subsequent work. These equations have been known by a variety of names in the
literature including “Blatter”, “Pattyn”, “Blatter-Pattyn”, “LMLa” [18], and “first
order” [16].

The use of hydrostatic equations in current models has been limited, however,
by the cost of solving the 3D nonlinear system for velocity. This cost comes from
both slow convergence on the nonlinearities (rheology and slip) and expensive linear
solves using standard preconditioners such as incomplete factorization and one-level
domain decomposition. The poor linear solve performance is attributable to the strong
anisotropy and heterogeneity imposed by the rheology and geometry.

In the present work, we introduce a Newton-Krylov multigrid solver that demon-
strates textbook multigrid efficiency, characterized by convergence in a small multiple
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of the cost of a single, fine-level residual evaluation, and typically involving an order of
magnitude reduction in residual per multigrid (V or F) cycle. The scheme converges
quadratically on the nonlinearities, is rapidly globalized by using grid sequencing, is
robust to parameters and geometry, coarsens rapidly in almost all cases, and exhibits
excellent parallel scalability. Our code is freely available as part of the Portable
Extensible Toolkit for Scientific computing (PETSc) [1].

Section 2 presents the equations and discretization, Section 3 describes the solver,
and Section 4 demonstrates performance and scalability with numerical examples.
Section 5 summarizes our conclusions.

2. Equations and Discretization. The hydrostatic equations are obtained
from the non-Newtonian Stokes equations in the limit where horizontal derivatives
of vertical velocity are small. Neglecting these terms allows incompressibility to be
enforced implicitly by eliminating pressure and vertical velocity, leaving a system
involving only horizontal components of velocity. See [28] for a rigorous derivation
and asymptotic analysis.

Consider an ice domain Ω ⊂ R3 lying between a Lipschitz continuous bed b(x, y)
and surface s(x, y) with thickness h = s − b bounded below by a positive constant.
1 The velocity u = (u, v) ∈ V = W 1,1+1/n(Ω) satisfies conservation of momentum,
which, omitting inertial and convective terms as is standard for ice sheets, is given by

−∇ ·
[
η

(
4ux + 2vy uy + vx uz
uy + vx 2ux + 4vy vz

)]
+ ρg∇s = 0, (2.1)
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is the second invariant. Ice sheet models typically take n = 3 as the power law
exponent. Equation (2.1) is subject to natural boundary conditions at the free surface
and either no-slip u = 0 or power-law slip with friction parameter

β2(γb) = β2
0

(
ε2b/2 + γb

)m−1
2 ,

where γb = 1
2 (u2 + v2), εb is regularizing velocity, and m ∈ (0, 1] is the exponent that

produces Navier slip for m = 1, Weertman [32] sliding for m = 1/n, and Coulomb slip
as m→ 0. In the present work, we define ε and εb using a strain rate of 10−5 a−1 and
a slip velocity of 1 m a−1, respectively.

To discretize this system with a finite-element method, we introduce the test
functions φ ∈ V and integrate by parts to produce the weak form: Find u ∈ V such
that∫

Ω

∇φ:η1:

(
4ux + 2vy uy + vx uz
uy + vx 2ux + 4vy vz

)
+ φ · ρg∇s+

∫
Γbed

φ · β2(|u|2/2)u = 0

(2.3)

1The singular limit h→ 0 is important in the case of grounded margins, but the present work
does not pursue it.
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for all φ ∈ V , where Γbed is the slip portion of the bed.
For our numerical studies, equation (2.3) was discretized on a topologically struc-

tured hexahedral grid using Q1 finite elements and standard 23-point Gauss quadrature.
Length, time, and mass units were chosen so that thickness, velocity, and driving
stresses are of order 1. See Section 3.2 for details on the enforcement of Dirichlet
boundary conditions.

The source code for our implementation is distributed as an example in PETSc [1]
versions 3.1 and later. 2 Several generalizations of the tests from ISMIP-HOM [25] are
implemented, run with the option -help for a complete list of options. Incidentally,
our results for “5 km test C” in that paper (variable slipperiness on a flat bed) agree
to three significant figures with the “Stokes” results therein. This is consistent with
the asympotic analysis of [28], which shows that slipperiness perturbations are not
present in the leading-order error terms for the hydrostatic equations (which are purely
geometric); c.f. [25, Table 4 and Figure 8], where the ensemble range is nearly as large
as the mean.

3. Solver and Implementation. We begin by writing the discretization of (2.3)
as an algebraic system F (U) = 0 with Jacobian J(U). This nonlinear system is solved
with a Newton iteration that requires an approximate solution δU of

J(U)δU = −F (U). (3.1)

Newton methods are quadratically convergent in the terminal phase but may converge
slowly or not at all in early phases. Many applications of the present solver are in
a time-stepping code where the initial iterates start within the region of quadratic
convergence; thus globalization would rarely be a concern. But since a good initial
iterate is not available in the present tests, we use grid sequencing (solving the
problem on a sequence of coarser grids) to produce an initial iterate on the fine
grid. Globalization is also a critical issue when solving steady-state problems. Grid
sequencing requires a geometric hierarchy of meshes with interpolation operators to
move the solution to the next finer level. Managing this hierarchy is often seen as
a programming burden, but it exposes more robust algorithms than are available
otherwise.

The Newton step (3.1) is solved by a Krylov method such as GMRES, for which
the iteration count is highly dependent on the quality of the preconditioner. Since
J(U) is symmetric positive definite (SPD), methods such as conjugate gradients could
be used. This work always uses GMRES, however, because it allows the use of
nonsymmetric preconditioners, and the iteration counts are always kept low so that
storage and restarts are not an issue. As an SPD system, it has a wide variety of
preconditioners to choose from; however, viscosity contrasts and strong anisotropy
cause most preconditioners to perform poorly. The rest of this section describes the
methods used to produce a scalable algorithm in spite of these difficulties.

3.1. Anisotropic Meshes. The ratio of width to thickness for outlet glaciers
(the regions of ice sheets with greatest physical interest) ranges from order 1 to
over 100. The nonlinear constitutive relation (2.2) produces three to four orders of
magnitude variation in viscosity (usually with fastest variation in the vertical) and
the Newton linearization of (2.3) produces additional anisotropy, effectively collapsing
the conductivity tensor in the direction of the velocity gradient.

2 Upon unpacking the source, which can be downloaded from http://mcs.anl.gov/petsc, see
src/snes/examples/tutorials/ex48.c.

http://mcs.anl.gov/petsc
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For systems with a priori known anisotropy, semi-coarsening has been successful for
attaining satisfactory multigrid performance even with weak smoothers like SOR, but
semi-coarsening is unattractive for two reasons. First, semi-coarsening in the vertical
direction would necessitate many levels because it reduces the problem size by only
a factor of 2 on each coarsening (instead of 8 for isotropic coarsening), and the fully
coarsened problem would still be far too large for a direct solver, necessitating further
coarsening in the horizontal direction. The presence of many levels leads to more
synchronization in parallel, which is detrimental to scalability and makes performance
more sensitive to network latency. Second, viscosity contrasts and anisotropy unaligned
with the grid arise when the friction parameter β2 is not smooth, as is the standard
case when studying the migration of ice stream margins as the bed transitions from
frozen (no-slip or very high friction) to temperate and very slippery depending on
subglacial hydrology.

To coarsen the system isotropically even on high-aspect domains, we order
the unknowns so that columns are contiguous with a natural block size of 2 (i.e.
{ui,j,k, vi,j,k, ui,j,k+1, vi,j,k+1, . . . } where k is the index that is increasing in the verti-
cal direction) and not decomposed in parallel. This decomposition is reasonable since
the number of vertical levels used in simulations is typically between 10 and 100; it
also is convenient since it is compatible with decompositions used by other climate
model components.

With this ordering, zero-fill incomplete factorization effectively performs an exact
solve of the column since all the neglected fill (relative to an exact factorization) is
caused by the coupling with adjacent columns. Pure line smoothers were also tried
as a smoother on the finest level, but robustness was significantly impacted, and the
memory benefits were deemed insufficient to pursue further.

In scenarios with little sliding and gentle geometry compared to the ice thickness,
the “shallow ice approximation” (SIA) is valid, allowing the velocity field to be deter-
mined locally from the surface slope and a column integral. If horizontal derivatives
were discarded from the linearized hydrostatic equations, the corresponding matrix
would have only uncoupled tridiagonal systems for each column and the solution of
these systems would be equivalent to linearized SIA. These tridiagonal systems become
singular as basal friction β2 → 0, and furthermore, SIA is physically inconsistent if β2

is discontinuous even when it is bounded below by a sufficiently large constant due to
discontinuous velocities [11]. The contribution to the hydrostatic matrix from discrete
horizontal derivatives is small (order h2

z/h
2
x) relative to that from vertical derivatives

when the element aspect ratio (hz/hx) is small, and therefore high energy modes of
the hydrostatic matrix, corresponding to velocity variation primarily in the vertical,
become well approximated by the block tridiagonal system representing SIA. When the
bed is very slippery, there are medium to long wavelength modes with vanishing energy
in the norm induced by the (nearly singular) SIA equations, but non-vanishing energy
in the norm induced by the hydrostatic equations. These modes are problematic if
the tridiagonal SIA system is used to precondition hydrostatic because it will take
many iterations for the Krylov solver to locate all of these modes not controlled by
the preconditioner.

Incomplete factorization with column ordering provides nearly exact coupling in
the vertical, effectively containing the tridiagonal SIA plus some coupling with nearby
columns, and is an effective stand-alone preconditioner when the bed is sticky and
horizontal grid spacing is large, despite lack of a coarse level. Indeed, with a typical
ice thickness of 1 km resting on a frozen bed and elements 5 km on a side, block Jacobi
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with zero-fill incomplete Cholesky converges to relative tolerance of 10−5 in about
10 Krylov iterations independent of the horizontal extent of the domain (number of
elements in the horizontal), independent of the number of elements in the vertical,
and independent of the number of subdomains (provided they do not get too small:
there is some degredation when subdomain size approaches a single column). However,
none of these favorable performance characteristics remain when the elements become
small relative to the ice thickness or when the bed becomes slippery since the usual
O
(
(L/H)2

)
condition number for second-order elliptic problems preconditioned by

one-level Schwarz methods with subdomains of size H (see [29]) becomes apparent.
Indeed, we have found low-fill incomplete factorization to be nearly unusable as part of
a one-level additive Schwarz method for problems with slippery beds or steep geometry,
even at low resolution, as investigated in Section 4.3.

3.2. Dirichlet Boundary Conditions. Multigrid is often sensitive to the en-
forcement of boundary conditions. Ideally, Dirichlet conditions would be completely
removed from the solution space, but doing so complicates grid management on struc-
tured grids, so instead we leave these degrees of freedom in the system but decouple
them from the other equations. During residual evaluation in the finite-element context,
this strategy corresponds to evaluating integrals with the Dirichlet condition satisfied
exactly and setting the residual on the Dirichlet nodes to be equal to a multiple of the
current solution. With this scheme, all rows and columns of the Jacobian corresponding
to Dirichlet nodes are zero except for a single diagonal entry. Thus the system retains
symmetry, and satisfaction of the Dirichlet conditions does not interfere with solving
the other equations. For good multigrid performance, the diagonal entry should be
similar to the diagonal entry of the Jacobian for nearby nodes. To ensure this, we set
the residual at Dirichlet nodes to

fu = 2ηhxhyhz(4/h2
x + 1/h2

y + 1/h2
z)u

fv = 2ηhxhyhz(1/h2
x + 4/h2

y + 1/h2
z)v,

(3.2)

where hx, hy, hz are the local element dimensions. This scaling produces the same
diagonal entries that would appear if the domain was extended so that constant
viscosity momentum equations appeared at the formerly Dirichlet nodes.

3.3. Matrices. The most expensive operations are Jacobian assembly and sparse
matrix kernels such as matrix-vector multiplication and solves with incomplete trian-
gular factors. The former involves evaluation of fractional powers and finite element
quadrature loops. While fractional powers take most of the time for residual evaluation,
they are less significant than quadrature loops for assembly. The quadrature loops
were explicitly vectorized by using SSE2 intrinsics which led to a 30% speedup on
Core 2 and Opteron architectures using both GNU and Intel compilers. There was no
manual vectorization for the Blue Gene/P results quoted in Section 4.2.

Assembly costs could be further mitigated by recomputing the matrix less fre-
quently, either by using a modified Newton method (degrades nonlinear convergence
rate) or by applying the current operator matrix-free by finite differencing the residual
or using automatic differentiation in which case only the preconditioner is lagged.
These are runtime options in the present code; but since they do not offer a clear
benefit they have not been pursued in the present work. If matrix-free application
of the true Jacobian is used, several other preconditioning options become available
without impacting the nonlinear convergence rate. One could assemble only the block-
tridiagonal column coupling, ignoring horizontal coupling, thus saving the memory for
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Table 3.1
Throughput (Mflop/s) for different matrix formats on Core 2 Duo (P8700) and Opteron 2356

(two sockets). MatSolve is a forward- and back-solve with incomplete Cholesky factors. The AIJ
format is using “inodes” which unrolls across consecutive rows with identical nonzero pattern (pairs
in this case).

Core 2, 1 process Opteron, 4 processes

Kernel AIJ BAIJ SBAIJ AIJ BAIJ SBAIJ

MatMult 812 985 1507 2226 2918 3119
MatSolve 718 957 955 1573 2869 2858

the finest level(s). Additionally, a truly 2D coarse problem can be defined by using the
shallow stream equations [22, 33, 27] and restriction operators defined by integrating
the entire column. These possibilities are also runtime options, but have not exhibited
a level of robustness comparable to that of the more conventional methods pursued
here.

The Jacobian is always symmetric positive definite and has a natural block size
of 2, so we use a symmetric block format (PETSc’s SBAIJ). This format stores one
column index per 2× 2 block in the upper triangular part of the matrix and therefore
uses about half the storage of the nonsymmetric BAIJ format, which in turn uses 25%
less memory than a scalar format (AIJ). Multiplication for symmetric storage requires
twice as much parallel communication as nonsymmetric storage, albeit with the same
number of messages. In return, the diagonal part of a parallel decomposition does
twice as much work per matrix entry and thus achieves higher throughput, as shown
in Table 3.1.

There are two ways to construct matrices on the coarse levels of multigrid methods.
The first, which we use in almost all our numerical examples, is to rediscretize
the system on the coarse mesh. In our implementation, this involves re-evaluating
nonlinearities on each level of the hierarchy, although restricting fine-level coefficients
of the linearized problem would also be possible. This procedure produces coarse
operators that are as sparse as possible on each of the levels. The Galerkin procedure
is an alternative that is mandatory for algebraic multigrid. Given an interpolation
operator P : Vcoarse → Vfine and assembled fine-level matrix Afine, the Galerkin coarse
operator is Acoarse = PTAfineP . These operators work well for some problems, but
computing the sparse matrix product in parallel involves significant communication
and irregular memory access, so it is relatively expensive. Additionally, second-order-
accurate interpolation operators cause a loss of sparsity in the coarse-level operators, an
effect known as stencil growth. Stencil growth tends to blur regions where the solution
has local structure and usually reduces the effectiveness of inexpensive smoothers.

4. Numerical Examples. We present several numerical examples that demon-
strate the algorithmic and parallel scalability of the Newton-Krylov multigrid approach.

4.1. Algorithmic Scalability. We consider three model problems inspired by
the periodic domain ISMIP-HOM [25] tests. All use surface s(x, y) = −x sinα, where
α is the surface slope (the coordinate system is not rotated) and a bed similar to
bA(x, y) = s(x, y)− 1000 m + 500 m · sin x̂ sin ŷ for (x, y) ∈ [0, L)2 with x̂ = 2πx/L, ŷ =
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Fig. 4.1. A cutout colored by velocity magnitude for flow over the bumpy bed of test X at
L = 10 km with m = 1/10 nearly plastic basal yield model. The cut on the left shows along-flow
velocity as the ice hits the sticky region, the cut on the right shows across-flow shear structure.

2πy/L. Test X uses bed bX = bA and stickiness parameter

β2
X(x, y) =

{
2000 Pa a m−1, if r = |(x̂, ŷ)− (π, π)| < 1

0, otherwise

which is free slip except for a sticky circle at the center of the domain, which is
not aligned with the grid. A solution cutout for L = 10 km is shown in Figure 4.1.
This problem exhibits shear localization at the edges of the sticky region and is most
extreme at high aspect ratio. We choose L = 80 km and α = 0.05◦ which produce
velocities from 0.9 km a−1 to 47 km a−1. 3 To demonstrate algorithmic scalability as
the problem size is increased, this test was run on 8 processors starting from a coarse
grid of 16×16×1, refining twice in the horizontal by factors of 2 in both x and y, then
three times in the vertical by factors of 8 each to reach a fine mesh of 64× 64× 513,
which has elements of nominal dimension 1250× 1250× 1.95 meters.

A visual representation of the nonlinear solve process is shown in Figure 4.2. In
this example and the next one, Luis Chacón’s variant of the Eisenstat-Walker [9]
method was used to automatically adjust linear solve tolerances as the nonlinear solve
converges. Solving the linear systems to higher tolerance would have little impact
on the number of nonlinear iterations and would be visible in the form of more ×
marks below the solid lines. That most × marks lie on the solid line for nonlinear
residual is an indication that effort is well balanced between linear and nonlinear solves.
Note that approximately 10 linear V-cycles on the fine level are required to reduce
the residual by 10 orders of magnitude. We remark that Picard iteration takes at
least 50 iterations to reach this tolerance (cf. [8] in which hundreds or thousands of
iterations were needed for an easier problem). When used in a time-stepping code, the

3 This problem may be run with the options -thi hom X -thi L 80e3 -thi alpha 0.05, the other
cases can be selected with similar options.
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Fig. 4.2. Grid-sequenced Newton-Krylov solution of test X. The solid lines denote nonlinear
iterations, and the dotted lines with × denote linear residuals.

solution at the last time step is available so typically only the terminal convergence
rate is important which further favors Newton methods. For example, an initial guess
might have a residual 103 higher than the required tolerance which takes 15 Picard
iterations to solve, but only one Newton iteration. Additionally, each linear solve for
this fine-level problem requires hundreds or thousands of iterations with a one-level
additive Schwarz method; see Section 4.3, which considers a smaller problem.

Test Y places a 200 m tower with vertical walls on the top of each bedrock
bump and uses an uncorrelated but smoothly varying stickiness resembling a dimpled
sombrero:

bY (x, y) =

{
bA(x, y), if bA(x, y) < −700 m

bA(x, y) + 200 m, otherwise

β2
Y (x, y) = 1000 Pa a m−1 · (1 + sin(

√
16r)/

√
10−2 + 16r cos

3x̂

2
cos

3ŷ

2
.

This tests the quality of the coarse grids even when large geometric errors are committed.
Note that the hydrostatic equations cannot be considered valid in this regime since
the topography is too abrupt. Such topography is present in reality, however, so we
may still desire an efficient solver. Figure 4.3 depicts the solve for this problem in
a 10 km square domain. Because of the successively better resolution of the “cliff,”
performance deteriorates on each level, as can be seen by the closer spacing of linear
solve marks (×). It is entirely acceptable up to level 3, however, where the elements
are approximately 12 m thick and stretch to reach over a 200 m vertical cliff in 125 m
horizontal, a slope of 58◦. On the finest level, they are 6 m thick and stretch over the
cliff in 62 m horizontal, a slope of 73◦. The approximation properties of such elements
are poor and, considering that the continuum equations are invalid here, we believe
this resolved topography is significantly rougher than will needed in applications.

Test Z sets bZ = bA, β2
Z = β2

X , and nonlinear sliding with exponent m = 0.3. It is
a regime where the hydrostatic equations are valid, provided the wavelength L is not
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Fig. 4.3. Grid sequenced Newton-Krylov convergence for test Y .
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Fig. 4.4. Average number of Krylov iterations per nonlinear iteration. Each nonlinear system
was solved to a relative tolerance of 10−2.

too small. We use this case to explore linear solve performance in Figure 4.4.

4.2. Parallel Scalability on Blue Gene/P. Two types of parallel scalability
are considered. Strong scalability is the ability to solve a fixed problem size faster by
using more processors. It is represented by a log-log plot of time versus number of
processors where a slope of −1 is optimal. Weak scalability is the ability to solve larger
problems in constant time by using more processors with the problem size per processor
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Fig. 4.5. Strong scaling on Shaheen for different size coarse levels problems and different coarse
level solvers (see text for details). The straight lines on the strong scaling plot have slope −1 which
is optimal. Grid sequencing is used, but only the nonlinear solve on the finest level is shown since
strong scalability is most important when many time steps are needed.

remaining fixed. It is represented by a plot of time versus number of processors where
a slope of 0 is optimal. Strong scalability is important in transient simulations with
many time steps while weak scalability is more important for attaining high resolution
in steady-state simulations or transient simulations with fewer time steps. Optimal
strong and weak scalability together would imply that a problem with N elements
could be solved in O(N/P ) time on P processors.

We investigate strong scaling using test Z at 80 km with basal friction exponent
m = 0.3 on Shaheen, a Blue Gene/P at the KAUST Supercomputing Laboratory.
Figure 4.5 shows strong scalability for four fixed global problem sizes with coarse
meshes of 16× 16× 3, 32× 32× 3, 64× 64× 3, and 64× 64× 1. The first three use five
levels of isotropic refinement to reach target meshes of 256×256×48, 512×512×48, and
1024×1024×48, the latter with nominal element sizes of 78×78×21 meters. The last
coarse mesh is refined anisotropically and more aggressively to reach 1024× 1024× 64
with only four levels. The smallest two coarse problems are solved redundantly and
the second is also solved using the “XXT ” direct solver of [31] (TFS) which exhibits
significantly better scalability but the coarse-level problem still presents a bottleneck.
The largest two coarse problems are only solved approximately using a V-cycle of the
algebraic multigrid package BoomerAMG [17], which removes the severe scalability
bottleneck of a direct coarse-level solve. These coarse problems have been designed so
that BoomerAMG is effective, see Section 4.3 for BoomerAMG applied to fine-level
problems.

Figure 4.6 shows weak scalability. The size of the coarse grid was held constant,
and additional levels were added as the number of processes was increased, such that
the subdomain sizes remain approximately constant. As the resolution increases,
the nonlinearity strength and linear stiffness also changes, explaining the relatively
expensive solve with four processes. This effect is also apparent in the Level 3
convergence of Figure 4.2. Four phases of the solution process dominate the runtime
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Fig. 4.6. Weak scaling on Shaheen with a breakdown of time spent in different phases of the
solution process. Times are for the full grid-sequenced problem instead of just the finest level solve.

and are identified in Figure 4.6. Multigrid setup costs account for less time than
nonlinear residual evaluation for the larger problem sizes.

4.3. Algebraic Methods. Building a geometric hierarchy with rediscretization
on coarse levels adds software complexity that many developers of numerical models do
not want to deal with. In this section, we summarize the performance characteristics
of several popular algebraic methods. We consider test X, L = 80 km, α = 0.03, with
40×40×12 elements distributed over four processes. We compare our multigrid method
with several one-level domain decomposition methods, two algebraic multigrids, and
field-split approaches. This problem is challenging for the standard Newton iteration
which requires 37 iterations and should be accompanied by grid sequencing for efficiency.
It takes the problem through a range of nonlinearities, however. Thus the number of
Krylov iterations to solve with a relative tolerance of 10−5, presented below, is a good
test of the linear solver.

We first consider one-level domain decomposition methods with incomplete factor-
ization, which are currently used to solve the hydrostatic equations by [10, 21] among
others. To keep iteration counts representative, we use full GMRES (no restart) with
modified Gram-Schmidt orthogonalization (note that neither is practical for production
use). Conventional symmetric additive Schwarz is denoted ASM(k), where k is the
overlap, restricted additive Schwarz [5] is denoted RASM(k). The average number of
GMRES iterations per Newton iteration is shown in Table 4.1. Note that increasing
overlap has no benefit when incomplete subdomain solvers are used.

The parallel algebraic multigrid packages ML [12] and BoomerAMG [17] provide
potentially scalable alternatives. ML is based on smoothed aggregation, tends to
coarsen very rapidly, and provides its restriction and coarse-level matrices to PETSc so
that that elaborate smoothers can be used. ML does not converge for this problem with
standard options; but with FGMRES on the outside of the V-cycle and GMRES(1)
with RASM(1) as the smoother, using ICC(0) for the subdomain solve except on level
1, where a direct solve was used, we see 34 V-cycles per Newton iteration. ML needs
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Table 4.1
Average number of GMRES iterations per Newton iteration for one-level domain decomposition

with different overlap and fill.

Subdomain solver

Decomposition ICC(0) ICC(1) ICC(4) Cholesky

Block Jacobi 367 315 220 97
ASM(1) 508 441 296 59
RASM(1) 368 306 190 52
ASM(2) 521 445 316 44
RASM(2) 365 305 189 38

Table 4.2
Average number of GMRES iterations per Newton iteration for field-split preconditioners with

different ways of combining the splits and different solvers within the splits. BoomerAMG used
7 levels and ML had 3 with the same solver parameters as discussed in the text for the coupled
approach.

Solver in Splits
Method of combining splits

Additive Multiplicative Sym. Multiplicative

Cholesky 19 9.9 9.3
ML 41 34 30
BoomerAMG 89 83 78
RASM(1)+Cholesky 186 173 84

only three levels to reach a coarse level with 144 degrees of freedom. BoomerAMG is
a classical algebraic multigrid, which tends to coarsen slowly on anisotropic problems
and does not expose the internal details, so smoother choices are limited. BoomerAMG
needs seven levels to reach a coarse grid with 663 degrees of freedom and averages
76 iterations per Newton iteration. There were other, still somewhat challenging,
problems for which BoomerAMG was competitive with geometric multigrid in terms
of iteration count, but the setup costs and required number of levels was always large.
ML never exhibited low iteration counts, even for easy problems.

Another approach to solving multicomponent problems is to split the components
and solve scalar problems for each in hopes that the scalar problems can be more
readily handled by available software such as algebraic multigrid. The split problems
can be combined additively, multiplicatively, or symmetric multiplicatively. Unlike
most Schwarz methods, additive methods are not typically implemented to expose
concurrency, but it is simpler to implement in a matrix-light way because only the
“self-coupling” terms need to be made available. Multiplicative methods need to apply
the off-diagonal submatrix, and the most efficient way to do so is usually by assembling
it; but the submatrix can also be applied by finite differencing the full residual. The
results, shown in Table 4.2, are uninspiring, especially when considering that field-split
creates additional synchronization points and attains lower throughput since it works
with scalar matrices instead of block matrices (see Table 3.1).

A good geometric multigrid for this problem uses four-levels with a coarse grid of
10 × 10 × 2 elements, which is semi-refined twice by a factor of 2 in the horizontal,
then by a factor of 6 in the vertical to reach the target 40 × 40 × 12 grid. The
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Table 4.3
Average number of GMRES iterations per Newton for different multigrid preconditioners.

Coarse Problem
Level 1 Level 2 and 3

ItsDecomp. Subdomain Decomp. Subdomain

10× 10× 2 Redisc BJacobi Cholesky BJacobi Cholesky 8.9
10× 10× 2 Redisc BJacobi Cholesky BJacobi ICC(0) 9.6
10× 10× 2 Redisc BJacobi Cholesky ASM(1) ICC(0) 11.9
10× 10× 2 Redisc BJacobi Cholesky RASM(1) ICC(0) 6.9
10× 10× 2 Redisc ASM(1) Cholesky ASM(1) ICC(0) 20.2
10× 10× 2 Redisc RASM(1) Cholesky RASM(1) ICC(0) 5.9
10× 10× 2 Galerkin RASM(1) Cholesky RASM(1) ICC(0) 54.
10× 10× 1 Redisc BJacobi Cholesky BJacobi ICC(0) 10.3
10× 10× 1 Redisc ASM(1) Cholesky BJacobi ICC(0) 10.1
10× 10× 1 Redisc RASM(1) Cholesky BJacobi ICC(0) 6.9

smoothers consist of a domain decomposition method and a subdomain solver that
may be exact or inexact. Direct solves for the subdomain problems on level 1 are
inexpensive and tend to improve robustness so we always use a direct solve. A different
refinement involves a 10× 10× 1 coarse grid and semi-refines twice by a factor of 2 in
the horizontal, then by a factor of 12 in the vertical to reach the same target grid. The
coarse levels are smaller in this case so the refinement is more efficient provided the
iteratation counts are similar. Table 4.3 explores a variety of multigrid preconditioner
configurations with each coarse level. A distinct effect is that inexact subdomain
solvers cause minimal performance degradation; cf. Section 4.1 where a factor of 5 to
10 degradation is visible. Use of Galerkin coarse operators has a catastrophic effect
on the iteration count and may help explain the poor robustness exhibited by the
algebraic multigrids. We cannot explain why symmetric additive Schwarz performs so
poorly on this problem, but the other numbers are robust to changes in resolution,
spatial domain, and number of processes.

We remark that when using grid sequencing and the method in the last row of
Table 4.3, the problem can be solved in seven Newton iterations on the fine level and
an average of 5.4 V-cycles per Newton iteration. If the Eisenstat-Walker method is
used to avoid oversolving, the problem takes eight Newton iterations with a total of
12 V-cycles.

5. Conclusion. Several projects [10, 21, 20, 8, 24] have developed software
to simulate ice sheets using the hydrostatic equations. All of these projects solve
the resulting algebraic equations using Picard linearization with one-level domain
decomposition and incomplete factorization. These methods are not scalable in the
strong or weak sense so resolution and simulation turn-around time has been severely
limited by the cost of the solver.

We have presented a grid-sequenced Newton-Krylov multigrid algorithm for solving
the algebraic equations resulting from a finite element discretization of the hydrostatic
equations. This geometric multigrid method demonstrates textbook multigrid efficiency
for extreme topography and basal conditions and offers thousandfold speedups relative
to the methods currently in use. Algebraic multigrid and field-split preconditioners
were not found to be competitive in terms of robustness or efficiency.

The present velocity solver can be immediately incorporated in a semi-implicit ice
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sheet evolution model, but the resulting scheme is only conditionally stable (time steps
must satisfy a CFL condition). Fully implicit time integration offers an alternative
that has no such constraint and is thus suitable for simulations over full ice ages and
longer, but requires the solution of more difficult algebraic equations. A prototype
using the present velocity discretization has been developed, but scalable linear solvers
for velocity-surface coupled problems is the subject of future investigation.

Several models involving only a vertically-integrated elliptic solve have been
proposed as less costly alternatives to solving the hydrostatic equations (e.g. [4, 14, 15]).
A scalable solver has not yet been proposed for these vertically-integrated elliptic
problems so the present model is faster than existing implementations at sufficiently
high resolution. To make a useful comparison, we estimate relative costs with the
assumption that a similarly optimal solver exists for the vertically-integrated system,
in which case the cost difference should be a constant factor independent of problem
size and number of processors. The “hybrid” model of [15] requires evaluating effective
viscosity in 3D and integrating to produce depth-averaged viscosity which appears in
the vertically-integrated equations. Evaluating effective viscosity accounts for most of
the cost of residual evaluation for the hydrostatic equations. Therefore the cost of such
an evaluation is comparable to the cost of the nonlinear viscosity evaluation required
in a Picard iteration for the hybrid model of [15]. Our solver produces high-accuracy
solutions in about 30 times the cost of a residual evaluation, less if a good initial
guess was available as when time stepping. [15] uses a Picard iteration to solve the
nonlinear system, requiring 50 iterations per nonlinear solve, therefore the hybrid
solver is only likely to have similar cost to our hydrostatic solver when the linear solves
require negligible time. If the hybrid equations were instead solved by Newton iteration
and the linear solves required similar or less time than evaluating viscosity, then the
hybrid equations might be solved as much as 5 times faster than the hydrostatic
equations. [4] factors depth dependent velocity and temperature contributions out of
the vertically-integrated nonlinear problem. The process only applies if the constitutive
relation can be factored and the resulting continuum equations have a lower formal
order of accuracy with respect to shallowness and stickyness distribution than the
model of [15]. In exchange, the nonlinear elliptic solve can be completed without
revisiting the 3D velocity field so the model cost has weaker dependence on the number
of nonlinear iterations and thus potential to be a few times faster than the model of
[15]. Vertically-integrated models do not involve linear algebra operating on the 3D
velocity field so they require significantly less memory than the hydrostatic equations
when all operators are assembled.

The hydrostatic equations are well-suited to investigation of ice streams and outlet
glaciers with gentle slope and arbitrary stickyness distribution. For example, 3D ice
stream thermodynamics (see [26] for analytic and [30] for numerical investigation
with along-flow symmetry) could be reliably investigated using velocity defined by the
hydrostatic equations. The methods in this paper can efficiently solve the discrete
hydrostatic equations in regimes with extreme basal topography and stickyness distri-
butions. The solution method is efficient even in regimes which are far in excess of
where the continuum hydrostatic approximation is valid as an approximation to the
Stokes equations. The latter issue of continuum validity has been partially addressed
using asymptotic analysis [28] and numerical comparison [18, 25]. Despite being
more complete than models involving only a vertically-integrated elliptic solve, the
hydrostatic equations are not suitable for steep outlet glaciers like Jakoshavn Isbræ or
Pine Island Glacier where solution of Stokes problems appears to be unavoidable.
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Comprehensive log files and the scripts used to produce the figures in
this paper are publicly available. They are currently hosted along with
the source for this document at https: // github. com/ jedbrown/

tme-ice .
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