
Geilo, 21 Jan 2008

Petaflop/s, seriously

David Keyes
Department of Applied Physics & Applied Mathematics

Columbia University

Geilo, 21 Jan 2008

Presentation plan
n Reflect briefly on progress in high-end scientific computing

� as captured in Gordon Bell prize trends
� as forecast in petascale architecture projects (from DOE labs in USA)
� as illustrated on physical applications based on partial differential

equations (PDEs)

n Peek briefly at some motivating applications
� Bell Prizes: mechanics, seismology, aerodynamics

n Look generically at PDE-based simulation and the basis of
continued optimism for its growth – capability-wise

n Look at some specific hurdles to PDE-based simulation posed by
high-end architecture

Geilo, 21 Jan 2008

Technical aspects of presentation
n Introduce a parameterized highly tunable class of

algorithms for parallel implicit solution of PDEs:
“Newton-Krylov-Schwarz” (ca. 1993)
� understand the source of their “weak scalability”
� understand their lack of “strong scalability”
� understand why explicit algorithms generally do not scale,

even weakly, in the high spatial resolution limit

n Note some algorithmic “adaptations” to architectural
stresses

Geilo, 21 Jan 2008

Philosophy of presentation
n Applications are given (as function of time)
n Architectures (hardware and software) are given (as

function of time)
n Algorithms must be adapted or created to bridge to

“hostile” architectures for the sake of the applications
n Knowledge of algorithmic capabilities can usefully

influence
� the way applications are formulated
� the way architectures are constructed

n Knowledge of application and architectural opportunities
can usefully influence algorithmic development

Geilo, 21 Jan 2008

Gedanken experiment:
How to use a jar of peanut butter as its price

slides downward?
n In 2007, at $3.20: make sandwiches
n By 2010, at $0.80: make recipe

substitutions for other oils
n By 2013, at $0.20: use as feedstock

for biopolymers, plastics, etc.
n By 2016, at $0.05: heat homes
n By 2019, at $0.0125: pave roads ☺

The cost of computing has been on a curve much better than this
for two decades and promises to continue for at least one more.
Like everyone else, scientists should plan increasing uses for it…

Geilo, 21 Jan 2008

Gordon Bell Prize: “price performance”

Year Application System $ per Mflops
1989 Reservoir modeling CM-2 2,500
1990 Electronic structure IPSC 1,250
1992 Polymer dynamics cluster 1,000
1993 Image analysis custom 154
1994 Quant molecular dyn cluster 333
1995 Comp fluid dynamics cluster 278
1996 Electronic structure SGI 159
1997 Gravitation cluster 56
1998 Quant chromodyn custom 12.5
1999 Gravitation custom 6.9
2000 Comp fluid dynamics cluster 1.9
2001 Structural analysis cluster 0.24

Four orders
of magnitude
in 12 years

recent: submissions received for as little as $.03 per Mflop/s using GPUs

Geilo, 21 Jan 2008

Gordon Bell Prize “peak performance”

Five orders of
magnitude in
17 years

Year Type Application No. Procs System Gflop/s
1988 PDE Structures 8 Cray Y-MP 1.0
1989 PDE Seismic 2,048 CM-2 5.6
1990 PDE Seismic 2,048 CM-2 14
1992 NB Gravitation 512 Delta 5.4
1993 MC Boltzmann 1,024 CM-5 60
1994 IE Structures 1,904 Paragon 143
1995 MC QCD 128 NWT 179
1996 PDE CFD 160 NWT 111
1997 NB Gravitation 4,096 ASCI Red 170
1998 MD Magnetism 1,536 T3E-1200 1,020
1999 PDE CFD 5,832 ASCI BluePac 627
2000 NB Gravitation 96 GRAPE-6 1,349
2001 NB Gravitation 1,024 GRAPE-6 11,550
2002 PDE Climate 5,120 Earth Sim 26,500
2003 PDE Seismic 1,944 Earth Sim 5,000
2004 PDE CFD 4,096 Earth Sim 15,200
2005 MD Solidification 131,072 BG/L 101,700
2006 MD Elec. Struct. 131,072 BG/L 207,000

Geilo, 21 Jan 2008

Gordon Bell Prize outpaces Moore’s Law

Gordon Moore

Gordon Bell

<<Demi Moore>>

CONCUR-
RENCY!!!

Four orders
of magnitude
in 13 years

Geilo, 21 Jan 2008

Whimsical remarks on simulation
progress measured by Bell, since 1988

n If similar improvements in speed (105) had been realized
in the airline industry, a 15-hour flight (e.g., JFK-BOM)
would require one-half of a second today

n If similar improvements in storage (104) had been realized
in the publishing industry, our office bookcases could
hold the book portion of the collection of the U.S. Library
of Congress (~20M volumes)

n If similar reductions in cost (104) had been realized in the
higher education industry, tuition room and board (at a
college in the USA) would cost about $2 per year

Geilo, 21 Jan 2008

Some platforms capable
of peak petaflop/s by 2009

< $100MBG

Including 288TB

~2.3MWP.01-.03212,992 cpus
1.4x to PF

294,912 cpus

Blue Gene L/P

> $150Mx86

+memory

~6MWx86QC2.6-8.014,240 cpus
6x to PF

~84,000 cpus

Clusters
x86-64/AMD64

>$170MP6

+memory

~9.4MWP61.312,208 cpus
6x to PF

~72,000 cpus

IBM Power5/6

>$150MXT4

+memory

~8MWXT4~.1 - ~123,016 cpus
4x to PF

~100,000 cpus

Cray XT3/XT4

Estimated
System

Cost

Power
Consumption

@ PF

Failures
per Month

Per TF

Scale
Demonstrated
Factor to PF

c/o Rick Stevens, Argonne National Lab (modified by K, Dec’07)

IBM’s BlueGene/P: 72K
quad-core procs w/ 2
FMADD @ 850 MHz
= 1.008 Pflop/s

13.6 GF/s
8 MB EDRAM

4 processors

1 chip

13.6 GF/s
2 GB DDRAM

32 compute cards

435 GF/s
64 GB

32 node cards

72 racks

1 PF/s
144 TB

Rack

System

Node Card

Compute Card

Chip

14 TF/s
2 TB

Thread concurrency:
288K (or 294,912) processors

On the floor at Argonne
National Laboratory
by early 2009

Probably the first petascale machine…

Geilo, 21 Jan 2008

What will petaflop/s machines look like?
n Many paths beyond silicon, but not in 5 years, at petascale
n BG/P will likely be the first “general purpose” Pflop/s

machine; other specialized machines may reach earlier
n Beyond BG/P, at least for PDE-based scientific codes:

� programming model will still be message-passing (due to
large legacy code base), adapted to multicore processors
beneath the MPI interface

n Earliest and most significant device improvement will be
nanotech memory – but not for earliest Pflop/s machines
� up to tens of GB on a 1cm-square die
� will deal directly with the “memory wall” problem

Geilo, 21 Jan 2008

How much parallelism will be required to
routinely sustain 1 petaflop/s

n Realistically, applications max out at about 25% (PDE) to 50%
(MD) of peak (after great effort at tuning by experts)

n Hypothetical low power machines will feature 1.6M to 6.6M
way parallelism
� 32-64 cores per processor and up to 2-4 threads per core
� Assume 25.6K nodes, each with 1 processor socket

n Hypothetical Intel terascale chip petascale system yields 1.5M
way parallelism
� 80 cores per processor
� Assume 4,608 nodes each with 4 processor sockets

n This is about 8 to 32 times the concurrency of today’s largest
BlueGene/L!

c/o Mark Seager, Lawrence Livermore National Lab

Geilo, 21 Jan 2008

Roadrunner architecture

8,640 dual-core Opterons
Ö 76 Teraflop/s

16,560 Cell eDP chips
Ö 1.7 Petaflop/s

One Accelerated Node
Cell
eDP

IB 4x
1GB/s

IB 4x
PCIe

IB 4x
PCIe

IB 4x
HTX

IB 4x
1GB/s

AMD

AMD

AMD

AMDIB 4x
Repeater

IB 4x
1GB/s

4 separate independently
attached Cell Blades

Cell
eDP

IB 4x
HSDC

Cell blade IBM x3755 node
Blade chassis 1 Cell processor per Opteron core

“plan of record” for 2008 Cell-accelerated system

2nd stage InfiniBand interconnect (8 switches)
18 x 8 sets 18 x 8 sets

15 connected
clusters

552 Cell eDP blades
(138 compute nodes)

144 Opteron x3755
8-way nodes

IB switch

144

4 x 138

IB switch

144

4 x 138

c/o Ken Koch, Los Alamos National Lab

Geilo, 21 Jan 2008

Programming Roadrunner
n Computational Library (ALF w/ IBM)

� Task & work block queuing & management
� Streaming & user-defined data partitioning
� Process management
� Error handling

n Communication Library (DaCS w/ IBM)
� Data movement & synchronization
� Process management & synchronization
� Topology description
� Error handling
� First implementation may leverage OpenMPI

n Longer term
� ALF & DaCS support in tools
� ALF from Opteron ⇒ Cell directly
� Compilers supporting some of this

DaCS or
OpenMPI

ALF &
libSPE

OpenMPI

x86
compiler

PowerPC
compiler

SPE
compiler

OpteronOpteron

PPEPPE

SPE (8)SPE (8)

ClusterCluster

c/o Ken Koch, Los Alamos National Lab

Geilo, 21 Jan 2008

“Ecosystem” for High Performance Computing
From the 2005 National Research Council Report on “The Future of

Supercomputing”:

n Platforms, software, institutions, applications, and people who solve
supercomputing applications can be thought of collectively as an ecosystem

n Research investment in HPC should be informed by the ecosystem point of
view - progress must come on a broad front of interrelated technologies,
rather than in the form of individual breakthroughs.

Pond ecosystem image from
http://www.tpwd.state.tx.us/
expltx/eft/txwild/pond.htm

c/o Horst Simon, Lawrence Berkeley National Lab

Geilo, 21 Jan 2008

US DOE labs with petascale roadmaps

Lawrence Berkeley
Argonne

Oak Ridge

DOE Science Lab

Lawrence Livermore

Los Alamos

Sandia

DOE Defense Lab

Geilo, 21 Jan 2008

Progress in scaling PDE applications
n Both structured and unstructured grids
n Both explicit and implicit methods
n Fine spatial resolution (through mesh adaptivity)
n Many-thousand-fold concurrency
n Strong scaling within modest ranges
n Weak scaling without obvious limits

See, e.g., Gordon Bell “special” prizes in recent years …

Geilo, 21 Jan 2008

2004 Gordon Bell “special” prize

Cortical
bone

Trabecular
bone

n 2004 Bell Prize in “special category” went to an implicit, unstructured
grid bone mechanics simulation
� 0.5 Tflop/s sustained on 4 thousand procs of IBM’s ASCI White
� 0.5 billion degrees of freedom
� large-deformation analysis
� employed in NIH bone research at Berkeley

c/o M. Adams, Columbia

Geilo, 21 Jan 2008

2003 Gordon Bell “special” prize
n 2003 Bell Prize in “special category” went to unstructured grid

geological parameter estimation problem
� 1 Tflop/s sustained on 2 thousand processors of HP’s “Lemieux
� each explicit forward PDE solve: 17 million degrees of freedom
� seismic inverse problem: 70 billion degrees of freedom
� employed in NSF seismic research at CMU

reconstruction

target

c/o O. Ghattas, UT Austin

Geilo, 21 Jan 2008

1999 Gordon Bell “special” prize

Transonic “Lambda” Shock, Mach contours on surfaces

n 1999 Bell Prize in “special category” went to implicit, unstructured grid
aerodynamics problems
� 0.23 Tflop/s sustained on 3 thousand processors of Intel’s ASCI Red
� 11 million degrees of freedom
� incompressible and compressible Euler flow
� employed in NASA analysis/design missions

to s

Geilo, 21 Jan 2008

2002
2003

2003-2004 (2 vol)
2004

2006
2006

2007

Fusion Simulation
Project

June 2007

2007

Mathematical
Challenges for the

Department of
Energy

January 2008

2008

Many reports (2002-07) ride
the “Bell curve” for

simulation

Geilo, 21 Jan 2008

Recent “E3” report

2007

z Chapter 1. Climate

z Chapter 2. Combustion, fusion and
fission energy technologies

z Chapter 3. Biology

z Chapter 4. Socio-economic modeling

z Chapter 5. Astrophysics

z Chapter 6. Mathematics

z Chapter 7. Software

z Chapter 8. Hardware

z Chapter 9. Cyberinfrastructure*

* Support for distributed virtual organizations, workflow
management, data management, cyber security

Geilo, 21 Jan 2008

Review: two definitions of scalability
n “Strong scaling”

� execution time decreases in inverse
proportion to the number of
processors

� fixed size problem overall
� often instead graphed as reciprocal,

“speedup”

n “Weak scaling”
� execution time remains constant, as

problem size and processor number
are increased in proportion

� fixed size problem per processor
� Various sub-types of weak-scaling

“memory bound”, etc. (see Kumar et
al.)

T

p

good

poor

poor

N ∝ p

log T

log p
good

N constant

Slope
= -1

Slope
= 0

Geilo, 21 Jan 2008

It’s all about the solver (at the tera-/peta-scale)
n Given, for example:

� a “physics” phase that
scales as O(N)

� a “solver” phase that
scales as O(N3/2)

� computation is almost all
solver after several
doublings

n Most applications groups
have not yet “felt” this
curve in their gut
� BG/L will change this
� 64K-processor machine

delivered in 2005

0

0.2

0.4

0.6

0.8

1

1.2

1 4 16 64 256 1024

Solver
Physics

Solver takes
50% time
on 64 procs

Solver takes
97% time on
64K procs

Weak scaling limit, assuming efficiency of
100% in both physics and solver phases

problem size

Geilo, 21 Jan 2008

SPMD parallelism w/domain decomposition

Partitioning of the grid
induces block structure on
the system matrix
(Jacobian)

Ω1

Ω2

Ω3

A23A21 A22
rows assigned

to proc “2”

(volume) work to (surface)
communication is preserved
under weak scaling

Geilo, 21 Jan 2008

DD relevant to any local stencil formulation
finite elements finite volumes

• All lead to sparse Jacobian matrices

J=

node i

row i
• However, the inverses are generally
dense; even the factors suffer
unacceptable fill-in in 3D
• Want to solve in subdomains only, and
use to precondition full sparse problem

finite differences

uniform Cartesian
adaptive

Geilo, 21 Jan 2008

An algorithm for PDE simulation:
Newton-Krylov-Schwarz

Newton
nonlinear solver

asymptotically quadratic

Krylov
accelerator

spectrally adaptive

Schwarz
preconditioner
parallelizable

Geilo, 21 Jan 2008

Four steps in creating a parallel program

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

n Decomposition of computation in tasks
n Assignment of tasks to processes
n Orchestration of data access, communication, synchronization
n Mapping processes to processors

c/o Culler et al, UC Berkeley

Geilo, 21 Jan 2008

Krylov-Schwarz parallelization is simple!
n Decomposition into concurrent tasks

� by domain

n Assignment of tasks to processes
� typically one subdomain per process

n Orchestration of communication between processes
� to perform sparse matvec – near neighbor communication
� to perform subdomain solve – nothing
� to build Krylov basis – global inner products
� to construct best fit solution – global sparse solve (redundantly?)

n Mapping of processes to processors
� typically one process per processor

Geilo, 21 Jan 2008

Inner Krylov-Schwarz kernel in parallel: a
Bulk Synchronous Process (“BSP”)

local
scatter

Jac-vec
multiply

precond
sweep

daxpy inner
product

Krylov
iteration

…

What happens if, for instance, in this
(schematicized) iteration, arithmetic
speed is doubled, scalar all-gather is
quartered, and local scatter is cut by
one-third? Each phase is considered
separately. Answer is to the right.

P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M

Geilo, 21 Jan 2008

Krylov-Schwarz compelling in serial, too
n As successive workingsets “drop” into a level of memory, capacity

(and with effort conflict) misses disappear, leaving only
compulsory misses, reducing demand on main memory bandwidth

n Cache size is not easily manipulated, but domain size is

Traffic decreases as
cache gets bigger or
subdomains get smaller

Geilo, 21 Jan 2008

Estimating scalability of stencil computations
n Given complexity estimates of the leading terms of:

� the concurrent computation (per iteration phase)
� the concurrent communication
� the synchronization frequency

n And a bulk synchronous model of the architecture including:
� internode communication (network topology and protocol reflecting

horizontal memory structure)
� on-node computation (effective performance parameters including vertical

memory structure)

n One can estimate optimal concurrency and optimal execution time
� on per-iteration basis, or overall (by taking into account any granularity-

dependent convergence rate)
� simply differentiate time estimate in terms of (N,P) with respect to P, equate

to zero and solve for P in terms of N

Geilo, 21 Jan 2008

Estimating 3D stencil costs (per iteration)

n grid points in each direction n,
total work N=O(n3)

n processors in each direction p,
total procs P=O(p3)

n memory per node requirements
O(N/P)

n concurrent execution time per iteration
A n3/p3

n grid points on side of each processor
subdomain n/p

n Concurrent neighbor commun. time
per iteration B n2/p2

n cost of global reductions in each
iteration C p(3/d) or C’ log p
� C includes synchronization frequency

n same dimensionless units for
measuring A, B, C
� e.g., cost of scalar floating point

multiply-add

Geilo, 21 Jan 2008

3D stencil computation illustration
Rich local network, tree-based global reductions

n total wall-clock time per iteration

n for optimal p, , or

or (with),

n without “speeddown,” p can grow with n
n in the limit as

pC
p
nB

p
nApnT log),(2

2

3

3

++=

0=
∂
∂

p
T

,023 3

2

4

3

=+−−
p
C

p
nB

p
nA

CA
B

2

3

243
32

≡θ

[] [] n
C
Apopt ⋅⎟

⎠
⎞

⎜
⎝
⎛ −−+−+⎟

⎠
⎞

⎜
⎝
⎛= 3

1
3

13
1

)1(1)1(1
2
3 θθ

0→C
B

n
C
Apopt ⋅⎟
⎠
⎞

⎜
⎝
⎛=

3
1

3

Geilo, 21 Jan 2008

Scalability results for DD stencil computations
n With tree-based (logarithmic) global reductions and

scalable nearest neighbor hardware:
� optimal number of processors scales linearly with

problem size

n With 3D torus-based global reductions and scalable
nearest neighbor hardware:
� optimal number of processors scales as three-fourths

power of problem size (almost “scalable”)

n With common network bus (heavy contention):
� optimal number of processors scales as one-fourth

power of problem size (not “scalable”)

Geilo, 21 Jan 2008

What’s under the rug?
n This generic weak scaling type of argument has been

made for ten years
� in Petaflops Workshop series (1997 onward)
� in “all-hands” group meetings of SciDAC users

(2001 onward)
n Why isn’t everyone “humming” on BG/L already?

Geilo, 21 Jan 2008

Contraindications of scalability
n Fixed problem size

� Amdahl-type constraints
� “fully resolved” discrete problems (e.g., protein folding,

network problems)
� “sufficiently resolved” problems from the continuum

n Scalable problem size
� Resolution-limited progress in “long time” integration

� explicit schemes for time-dependent PDEs
� suboptimal iterative relaxations schemes for equilibrium

PDEs
� Nonuniformity of threads

� adaptive schemes
� multiphase computations (e.g, particle and field)

Geilo, 21 Jan 2008

Amdahl’s Law (1967)
n Fundamental limit to strong scaling due to small overheads
n Independent of number of processors available
n Analyze by binning code segments by degree of exploitable

concurrency and dividing by available processors, up to limit
n Illustration for just two bins:

� fraction f1 of work that is purely sequential
� fraction (1-f1) of work that is arbitrarily concurrent

n Wall clock time for p processors
n Speedup

� for f1=0.01
n Applies to any performance enhancement, not just parallelism

pff /)1(11 −+∝

]/)1(/[1 11 pff −+=

99.091.050.39.21.0S

100001000100101p

Geilo, 21 Jan 2008

Resolution-limited progress (weak scaling)
n Illustrate for CFL-limited

time stepping
n Parallel wall clock time

n Example: explicit wave
problem in 3D (α=1, d=3)

n Example: explicit diffusion
problem in 2D (α=2, d=2)

dd PST //1 αα+∝

d-dimensional domain, length scale L
d+1-dimensional space-time, time scale T
h mesh cell size
τ time step size
τ=O(hα) bound on time step
n=L/h number of mesh cells in each dim
N=nd number of mesh cells overall
M=T/τ number of time steps overall
O(N) total work to perform one time step
O(MN) total work to solve problem
P number of processors
S storage per processor
PS total storage on all processors (=N)
O(MN/P) parallel wall clock time
∝ (T/τ)(PS)/P ∝ T S1+α/d Pα/d

(since τ ∝ hα ∝ 1/nα = 1/Nα/d = 1/(PS)α/d)

3 months10 days1 dayExe. time

105× 105×105104× 104×104103× 103×103Domain

27 years3 months1 dayExe. time

105× 105104× 104103× 103Domain

Geilo, 21 Jan 2008

Thread nonuniformity
n Evolving state of the simulation can spoil load balance

� adaptive scheme
� local mesh refinement
� local time adaptivity

� state-dependent work complexity
� complex constitutive or reaction terms
� nonlinear inner loops with variable convergence rates

� multiphase simulation
� bulk synchronous alternation between different phases with

different work distributions

…
P1:

P2:

Pn:
M

…
P1:

P2:

Pn:
M

Geilo, 21 Jan 2008

Algorithmic adaptation
n No computer system is well balanced for all computational

tasks, or even for all phases of a single well-defined task, like
solving nonlinear systems arising from discretized differential
equations

n Given the need for high performance in the solution of these
and related systems, one should be aware of which
computational phases are limited by which aspect of
hardware or software.

n With this knowledge, one can design algorithms to “play to”
the strengths of a machine of given architecture, or one can
intelligently select or evolve architectures for preferred
algorithms.

Geilo, 21 Jan 2008

Four potential limiters on scalability
in large-scale parallel scientific codes

n Insufficient localized concurrency
n Load imbalance at synchronization points
n Interprocessor message latency
n Interprocessor message bandwidth

“horizontal aspects”

Geilo, 21 Jan 2008

Four potential limiters
on arithmetic performance

n Memory latency
� Failure to predict which data items are needed

n Memory bandwidth
� Failure to deliver data at consumption rate of processor

n Load/store instruction issue rate
� Failure of processor to issue enough loads/stores per cycle

n Floating point instruction issue rate
� Low percentage of floating point operations among all

operations

“vertical aspects”

Geilo, 21 Jan 2008

Candidate stresspoints of PDE kernels
n Vertex-based loops

� memory bandwidth
n Edge-based “stencil op” loops

� load/store (register-cache) bandwidth
� internode bandwidth

n Sparse, narrow-band recurrences
� memory bandwidth
� internode bandwidth, internode latency, network

diameter
n Inner products and norms

� memory bandwidth
� internode latency, network diameter

Geilo, 21 Jan 2008

Summary of observations for CFD case study
(aerodynamics simulation – 1999 Bell Prize)
n Processor scalability is no problem, in principle

� if network is richly connected
n For fixed-size problems, global synchronization and near neighbor

communication are eventually bottlenecks (strong scaling)
n Coarse grids in hierarchical solvers can become bottlenecks

� coarse grid concurrency may need to be coarser than fine grid
concurrency (recur: multigrid)

n Memory latency is not a serious problem, in principle
� due to predictability of memory transfers in PDEs

n Memory bandwidth is a major bottleneck
n Processor Load-Store functionality may be a bottleneck
n Infrequency of floating point instructions in unstructured problems

may be a bottleneck

Geilo, 21 Jan 2008

Some noteworthy algorithmic adaptations to
distributed memory architecture

n Restricted Schwarz (Cai & Sarkis)
� omit every other local communication (actually leads to better

convergence, now proved)
n Extrapolated Schwarz (Garbey & Tromeur-Dervout)

� hide interprocessor latency by extrapolating messages received in time
integration, with rollback if actual messages have discrepancies in lower
Fourier modes (higher mode discrepancies decay anyway)

n Nonlinear Schwarz (Cai & Keyes)
� reduce global Krylov-Schwarz synchronizations by applying NKS

within well-connected subdomains and performing few global outer
Newton iterations (interchange of loops, move synchronization outside)

n Aggressive coarsening in AMG (Falgout, Yang, et al.)
� reduce size of coarse problems to trade-off cost per iteration with

number of iterations (and many other such preconditioner quality ideas)

Geilo, 21 Jan 2008

n Algebraic multigrid a key algorithmic technology
� Discrete operator defined for finest grid by the application, itself, and

for many recursively derived levels with successively fewer degrees of
freedom, for solver purposes

� Unlike geometric multigrid, AMG not restricted to problems with
“natural” coarsenings derived from grid alone

n Optimality (cost per cycle) intimately tied to the ability to coarsen
aggressively

n Convergence scalability (number of cycles) and parallel efficiency
also sensitive to rate of coarsening

c/o U. M. Yang, LLNL

Algebraic multigrid on BG/L

• While much research and
development remains, multigrid
will clearly be practical at BG/L-
scale concurrency

Figure shows weak scaling result for AMG out
to 131,072 processors, with one 25× 25×25
block per processor (from 15.6K dofs up to
2.05B dofs) procs

se
c

0

5

10

15

20

0 50000 100000

C-old

C-new

Geilo, 21 Jan 2008

Some noteworthy algorithmic adaptations to
hierarchical memory architecture

n ATLAS/Sparsity (Whalley & Dongarra, Demmel & Yelick)
� block (and and selectively fill and reorder for sparse) for

optimal cache performance of linear kernels

n Block-vector Krylov methods (Baker et al.)
� amortize the unavoidable streaming of large sparse Jacobian

through cache over several matrix-vector multiplies

n Block relaxation methods (Douglas et al.)
� similar to above, but for triangular backsolves

n Reduced precision preconditioning (Smith et al.)
� double effective bandwidth by truncating precision of already

approximate operators

Geilo, 21 Jan 2008

Adaptation to asynchronous programming styles
n Can write code in styles that do not require artifactual

synchronization
n Critical path of a nonlinear implicit PDE solve is essentially

... lin_solve, bound_step, update, lin_solve, bound_step, update, ...

n However, we often insert into this path things that could be done
more asynchronously, because we have limited language
expressiveness
� Jacobian and preconditioner refresh
� Convergence testing
� Algorithmic parameter adaptation
� I/O, compression
� Visualization, data mining

n See Browne, others, on “associative communication”

Geilo, 21 Jan 2008

Often neglected algorithmic possibilities for
more scalability

n Parallelization in the time (or generally causal) dimension,
particularly in nonlinear problems after spatial concurrency
is exhausted

n Creating independent ensembles for asynchronous evaluation
(parameter exploration or stochastic model) after space-time
concurrency is exhausted on the direct problem

n Trading finely resolved discretizations (very sparse) for
higher-order discretizations (block dense), or other
algorithmic innovations that alter the granularity of bulk
synchronous work between data movements

Geilo, 21 Jan 2008

Reminder about the source of simulations
n Computational science and engineering is not about individual large-

scale analyses, done fast and “thrown over the wall”
n Both “results” and their sensitivities are desired; often multiple

operation points to be simulated are known a priori, rather than
sequentially

n Sensitivities may be fed back into optimization process
n Full PDE analyses may also be inner iterations in a multidisciplinary

computation
n In such contexts, “petaflop/s” may mean 1,000 analyses running

somewhat asynchronously with respect to each other, each at 1
Tflop/s – clearly a less daunting challenge and one that has better
synchronization properties for exploiting “The Grid” – than 1 analysis
running at 1 Pflop/s

Geilo, 21 Jan 2008

Acknowledgments
n DOE ASC and SciDAC programs
n NSF ITR program
n PETSc software team
n Hypre software team

Geilo, 21 Jan 2008

Acknowledgment:
today’s Peta-op/s machines

1012 neurons @ 1 KHz = 1 PetaOp/s

