Multilevel solvers with adaptive coarse space construction for lithosphere dynamics

Jed Brown1, Mark Adams2, Matt Knepley3, Barry Smith1

1Mathematics and Computer Science Division, Argonne National Laboratory
2Columbia University
3University of Chicago

Frontiers in Computational Physics, 2012-12-19
The Great Solver Schism: Monolithic or Split?

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid

\[\text{X Need to understand local spectral and compatibility properties of the coupled system} \]

- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.

Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
 - approximate commutators
 - SIMPLE, PCD, LSC
 - segregated smoothers
 - Augmented Lagrangian
 - “parabolization” for stiff waves

\[\text{X Need to understand global coupling strengths} \]
Status quo for implicit solves in lithosphere dynamics

- global linearization using Newton or Picard
- assembly of a sparse matrix
- “block” factorization preconditioner with approximate Schur complement
- algebraic or geometric multigrid on positive-definite systems

Why is this bad?

- nonlinearities (e.g., plastic yield) are mostly local
 - feed back through nearly linear large scales
 - frequent visits to fine-scales even in nearly-linear regions
 - no way to locally update coarse grid operator
 - Newton linearization introduces anisotropy

- assembled sparse matrices are terrible for performance on modern hardware
 - memory bandwidth is very expensive compared to flops
 - fine-scale assembly costs a lot of memory
 - assembled matrices are good for algorithmic experimentation

- block preconditioners require more parallel communication
Hardware Arithmetic Intensity

<table>
<thead>
<tr>
<th>Operation</th>
<th>Arithmetic Intensity (flops/B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse matrix-vector product</td>
<td>1/6</td>
</tr>
<tr>
<td>Dense matrix-vector product</td>
<td>1/4</td>
</tr>
<tr>
<td>Unassembled matrix-vector product</td>
<td>≈ 8</td>
</tr>
<tr>
<td>High-order residual evaluation</td>
<td>> 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Processor</th>
<th>BW (GB/s)</th>
<th>Peak (GF/s)</th>
<th>Balanced AI (F/B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E5-2670 8-core</td>
<td>35</td>
<td>166</td>
<td>4.7</td>
</tr>
<tr>
<td>Magny Cours 16-core</td>
<td>49</td>
<td>281</td>
<td>5.7</td>
</tr>
<tr>
<td>Blue Gene/Q node</td>
<td>43</td>
<td>205</td>
<td>4.8</td>
</tr>
<tr>
<td>Tesla M2090</td>
<td>120</td>
<td>665</td>
<td>5.5</td>
</tr>
<tr>
<td>Kepler K20Xm</td>
<td>160</td>
<td>1310</td>
<td>8.2</td>
</tr>
<tr>
<td>Xeon Phi</td>
<td>150</td>
<td>1248</td>
<td>8.3</td>
</tr>
</tbody>
</table>
Performance of assembled versus unassembled

- High order Jacobian stored unassembled using coefficients at quadrature points, can use local AD
- Choose approximation order at run-time, independent for each field
- Precondition high order using assembled lowest order method
- Implementation > 70% of FPU peak, SpMV bandwidth wall < 4%
τ formulation of Full Approximation Scheme (FAS)

- classical formulation: “coarse grid *accelerates* fine grid ↓ ↗
- τ formulation: “fine grid feeds back into coarse grid” ↗ ↘
- To solve $Nu = f$, recursively apply

 pre-smooth \[\tilde{u}^h \leftarrow S^h_{\text{pre}}(u_0^h, f^h) \]

 solve coarse problem for u^H

 \[
 N^H u^H = I^H f^h + N^H \hat{I}^H \tilde{u}^h - I^H N^h \tilde{u}^h
 \]

 correction and post-smooth \[u^h \leftarrow S^h_{\text{post}}(\tilde{u}^h + I^H (u^H - \hat{I}^H \tilde{u}^h), f^h) \]

 \[
 \begin{align*}
 I^H_h & \quad \text{residual restriction} \\
 \hat{I}^H_h & \quad \text{solution restriction} \\
 I^H & \quad \text{solution interpolation} \\
 f^H & \quad \text{restricted forcing} \\
 \{S^h_{\text{pre}}, S^h_{\text{post}}\} & \quad \text{smoothing operations on the fine grid}
 \end{align*}
 \]

- At convergence, $u^{H*} = \hat{I}^H_h u^{h*}$ solves the τ-corrected coarse grid equation $N^H u^H = f^H + \tau^H_h$, thus τ^H_h is the “fine grid feedback” that makes the coarse grid equation accurate.

- τ^H_h is *local* and need only be recomputed where it becomes stale.
Multiscale compression and recovery using τ

- checkpoint converged coarse state
- recover using FMG anchored at $\ell_{cp} + 1$
- needs only ℓ_{cp} neighbor points
- τ correction is local

- Fine state u^{h*} recovered *locally* from converged coarse state
 \[u^{H*} = \hat{I}_h^H u^{h*} \]
- Normal multigrid cycles visit all levels moving from $n \rightarrow n + 1$
- FMG recovery only accesses levels finer than ℓ_{CP}
- Only need neighborhood of desired region for decompression
- Lightweight checkpointing for transient adjoint computation
- Postprocessing applications, e.g., in-situ visualization at high temporal resolution in part of the domain
Four Schools of Thought for Multilevel Methods

- **Multigrid** (Brandt, Hackbusch, ...)
 - originally for resolved/asymptotic spatial discretizations
 - “textbook”: reach discretization error in one F-cycle
 - matrix-light/free, good for memory bandwidth
 - FAS well-developed for nonlinear problems

- **Multilevel Domain Decomposition** (Mandel, Dohrmann, Widlund)
 - leverage direct subdomain solvers, minimize communication
 - rapid coarsening $\kappa(P^{-1}A) \sim (1 + \log \frac{H}{h})^{2(L-1)}$
 - often formulated only as two-level methods, domain-conforming coefficients
 - lightly developed for nonlinear (e.g. ASPIN [Cai and Keyes])

- **Multiscale Finite Elements** (Babuska, Arbogast, ...)
 - local preprocessing to construct linear coarse operator
 - popular in porous media and composite materials (robust theory)

- **Equation-based multiscale models** (many)
 - Renormalization multigrid/systematic upscaling (Brandt)
 - interpolation, equilibration (compatible relaxation/Monte-Carlo), restriction
 - Heterogeneous multiscale method (E, Engquist)
 - reconstruction, constrained microscale simulation, data processing/compression
Computable Convergence Measures (Linear correction notation)

- Prolongation \(P : V_{\text{coarse}} \rightarrow V_{\text{fine}} \)
- Restriction \(R : V_{\text{fine}} \rightarrow V_{\text{coarse}} \)
- Smoother \(S^{-1} : V_{\text{fine}} \rightarrow V_{\text{fine}} \) should remove high-frequency component of error
- \(I - PR : V_{\text{fine}} \rightarrow V_{\text{fine}} \) removes part of vector visible in coarse space
- Error iteration \(I - M^{-1}A \), worst-case convergence factor is \(\lambda_{\text{max}} \)
- “Interpolation must be able to approximate an eigenvector with error bound proportional to the size of the associated eigenvalue.”

- Upper bound for convergence rate: \(\max_x \|x\|_{(I-PR)S(I-PR)}/\|x\|_A \)
- Distinct challenges to constructing coarse space and operator
 - Is the coarse space large enough to distinguish all low-energy modes?
 - Are those modes accurately represented? (Is \(P \) accurate enough?)
 - Is the coarse operator accurate? (Automatic with Galerkin-type \(RAP \) for nice problems.)
Compatible Relaxation

- Apply smoother subject to constraint $\hat{R}x = 0$
 1. $\tilde{x}_n = x_{n-1} + S^{-1}_A(r(x_{n-1}))$
 2. $x_n = \tilde{x}_n + S^{-1}_R(\hat{R}\tilde{x}_n)$
- Method to determine when coarse space is rich enough
- Slow to relax points/regions good candidates for coarse points/aggregates
- If subdomain solves used for smoothing, only interfaces are candidates

[Livne 2004]
Coarse basis functions

- \[\| PRx \|_A + \| (I - PR)x \|_A \leq C \| x \|_A \]
- “decompose any \(x \) into parts without increasing energy much”
- near-null spaces must be represented exactly (partition of unity)
- number of rows of \(R \) determined already, usually \(P = R^T \)
- energy minimization with specified support [Wan, Chan, Smith; Mandel, Brezina, Vanek; Xu, Zikatanov]
- smoothed aggregation: \(P_{\text{smooth}} = (I - \omega D^{-1}A)P_{\text{agg}} \)
- classical AMG: each fine point processed independently
- domain decomposition/multiscale FEM: solve subdomain problems
Example: BDDC/FETI-DP coarse basis function

- only low-order continuity between subdomains
- corrected by more technical subdomain smoother

[Mandel and Sousedik 2010]
Why I like subdomain problems

- subassembly avoids explicit matrix triple product $A_{\text{coarse}} \leftarrow P^T A_{\text{fine}} P$
- can update the coarse operator locally (e.g. local nonlinearity)
- need not assemble entire fine grid operator
- if repetitive structure, need not store entire fine grid state
- can coarsen very rapidly (especially in smooth regions)
- lower communication setup phase

[Arbogast 2011]
Subdomain Interfaces and Energy Minimization

- minimize energy of all basis functions (columns of P) subject to
 - fixed compact support
 - partition of unity (near-null space)
- enforce partition of unity using Lagrange multipliers
 - $\lambda(x) = 0$ in coarse element interiors
 - means that globally optimal coarse basis functions are harmonic extensions of some interface values

[Xu and Zikatanov 2004]
Local edge/face-centered problems

\[\mathbf{v}_e^{MD} = -a_e \nabla \phi_e^{MD} \quad \text{in } E_e, \]
\[\nabla \cdot \mathbf{v}_e^{MD} = \pm |e|/|E_{e,i}| \quad \text{in } E_{e,i}, \ i = 1, 2, \]
\[\mathbf{v}_e^{MD} \cdot \mathbf{v} = 0 \quad \text{on } \partial E_e. \]

- Arbogast’s multiscale dual-support elements for porous media
 - inconsistent for unaligned anisotropy
 - homogenization approach: upscale effective conductivity tensor from solution of periodic dual-support problem
- Dohrmann and Pechstein’s balancing domain decomposition for elasticity with unaligned coefficients
 - balance “torn” interface values \(u_{ie}, u_{je} \), written in terms of subdomain Schur complements
 - \(\bar{f}_e = S_{iee}u_{ie} + S_{jee}u_{je} \): sum of forces required along face \(e \) to displace subdomains \(i \) and \(j \) by \(u_{ie}, u_{je} \)
 - \(\bar{u}_e = (S_{iee} + S_{jee})^{-1}\bar{f}_e \): continuous displacement
 - equivalent to a (different) dual-support basis
Complication for saddle point problems

\[
\begin{pmatrix}
A & B^T \\
B & 0
\end{pmatrix}
\]

- want uniform stability for coarse problem
 - respect inf-sup condition, similar to fine grid
 - make coarse grid mimic fine grid \((Q_2 - P_{\text{disc}}^1)\)
- exact representation of volumetric mode
 - we can’t cheat on conservation while upscaling
 - naturally involves face integrals (inconvenient for recursive application)
 - obtain similar quantity through solution of inhomogeneous Stokes problems
- heuristic algebraic coarsening also possible [Adams 2004]
Nonlinear problems

- matrix-based smoothers require global linearization
- nonlinearity often more efficiently resolved locally
- nonlinear additive or multiplicative Schwarz
- nonlinear/matrix-free is good if

\[C = \frac{\text{(cost to evaluate residual at one point)} \cdot N}{\text{(cost of global residual)}} \sim 1 \]

- finite difference: \(C < 2 \)
- finite volume: \(C \sim 2 \), depends on reconstruction
- finite element: \(C \sim \text{number of vertices per cell} \)

- larger block smoothers help reduce \(C \)
- additive correction like Jacobi reduces \(C \), but need to assemble corrector/scaling
Smoothing for saddle point systems

\[
\begin{pmatrix}
A & B^T \\
B & 0
\end{pmatrix}
\]

- pressure has no self-coupling
- pressure error modes not spectrally separated
- approaches
 - block smoothers (Vanka)
 - amplify fine-grid modes (distributive relaxation)
 - splitting with approximate Schur complement
Vanka block smoothers

- solve pressure-centered cell problems (better for discontinuous pressure)
- robust convergence factor ~ 0.3 if coarse grids are accurate
- 1D energy minimizing interpolants easy and effective
- can use assembled sparse matrices, but more efficient without
Changing Associativity: Distributive Smoothing

\[PAx = Pb \quad APy = b, \quad x = Py \]

▶ Normal Preconditioning: make \(PA \) or \(AP \) well-conditioned
▶ Alternative: amplify high-frequency modes
 ▶ Multigrid smoothers only need to relax high-frequency modes
 ▶ Easier to do when spectrally separated: \(h \)-ellipticity
 ▶ pointwise smoothers (Gauss-Seidel) and polynomial/multistage methods
▶ Mechanics: form the product \(PA \) or \(AP \) and apply “normal” method
▶ Example (Stokes)

\[
A \sim \begin{pmatrix} -\nabla^2 & \nabla \\ \nabla & 0 \end{pmatrix} \quad P \sim \begin{pmatrix} 1 & -\nabla \\ 0 & -\nabla^2 \end{pmatrix} \quad AP \sim \begin{pmatrix} -\nabla^2 & "0" \\ \nabla & -\nabla^2 \end{pmatrix}
\]

▶ Convergence factor 0.32 (as good as Laplace) for smooth problems
Coupled MG for Stokes, split smoothers

\[J = \begin{pmatrix} A & B^T \\ B & C \end{pmatrix} \]

\[P_{\text{smooth}} = \begin{pmatrix} A_{\text{SOR}} & 0 \\ B & M \end{pmatrix} \]

-pc_type mg -pc_mg_levels 5 -pc_mg_galerkin
-mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_block_size 3
-mg_levels_pc_fieldsplit_0_fields 0,1
-mg_levels_pc_fieldsplit_1_fields 2
-mg_levels_fieldsplit_0_pc_type sor
Outlook

- smoothing with point-block Jacobi Chebyshev and scaled diagonal for pressure
- needs only (subdomain “Neumann”) nonlinear function evaluations and assembly of point-block diagonal matrices
- convergence rates similar to smoothed aggregation, but without fine-grid assembly
- allows local updates of coarse operator, but currently slower due to naive implementation
- Development in progress within PETSc
 - parallel implementation of dual-support problems without duplicating lots of work
 - homogenization-based nonlinear coarsening
 - true τ formulation with adaptive fine-grid visits and partial coarse operator updates
 - microstructure-compatible pressure interpolation
 - “spectrally-correct” nonlinear saddle-point smoothers
 - locally-computable spectral estimates for guaranteed-stable additive smoothers