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The need for models of grounding line dynamics
Accurate prediction of sea level rise is a problem of significant societal relevance and the contribu-
tor with greatest uncertainty is overwhelmingly ice sheet dynamics. In one spatial dimension, it is
readily shown [6] that the point where ice becomes floating (the grounding line) is unstable on a
reverse-sloping bed. Alaska’s Columbia Glacier is a present example of this instability, where a long
period of quasi-steady behavior is followed by sustained rapid retreat combined with greatly increased
discharge.
The leading source of uncertainty on the century time scale comes from West Antarctica, especially
the Amundsen Sea sector where Pine Island and Thwaites glaciers harbor enough ice to produce over
one meter of effective sea level rise, in a regime widely thought to be unstable according to present
theory. However, the theory is not strictly applicable in three dimensions, and even if the instability
is still present for the relevant geometry, it does not predict the rate of retreat. To further complicate
issues, ocean circulation in this region is very strong, with melt rates on the order of 50 meters per
year [5], and time scales much faster than typically associated with ice sheets.

High-order methods

Figure: Two measures of cost for 3D high-order finite element methods. The dark line represents an
example suitable accuracy. Finite element methods of order p involve element matrices of size
p3 × p3. Since solver cost is almost always superlinear in the number of nonzeros in the Jacobian,
high-order methods that involve assembling the true Jacobian are rarely economical.

It is not necessary to assemble the true Jacobian in order to
solve Newton steps using Krylov methods, however some as-
sembled matrices are required for preconditioning. We use
a dual-order scheme [2] to assemble spectrally equivalent,
but much sparser matrices. This permits use of very high
order schemes with cost similar to conventional quadratic el-
ements.

Efficient representation of Jacobians

◮ Continuous weak form: find u ∈ VD such that

vTF (u) ∼
∫

Ω
v · f0(u,∇u) +∇v : f1(u,∇u) = 0 ∀v ∈ V0

◮ Weak form of the Jacobian
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◮ Represent J(w) by storing [fi ,j] at quadrature points.
◮ Frequently much of [fi ,j] is computed while evaluating fi.

◮ Inexpensive taping for full-accuracy matrix-free Jacobian
◮ Code reuse in preconditioner assembly

◮ The terms in [fi ,j] are easy to compute with symbolic math. Possible to
automatically generate code.

Non-Newtonian Stokes problems

◮ Non-shallow ice dynamics requires finding velocity u and pressure p:

−∇ · (ηDu) +∇p − f = 0
∇·u = 0

where

Du = 1
2
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η(γ) = B(Θ, . . . )
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)

p−2
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2Du :Du p = 1 + 1

n
≈ 4

3

with boundary conditions

(ηDu − p1) ·n =











0 free surface

−ρwzn ice-ocean interface

u = 0 frozen bed,Θ < Θ0

u ·n = gmelt(Tu, . . . )
T (ηDu − p1) ·n = gslip(Tu, . . . )







nonlinear slip,Θ ≥ Θ0

where T = 1 − n ⊗ n projects into the tangent space and slip is defined by

gslip(Tu) = βm(. . . )|Tu|m−1Tu

Navier m = 1, Weertman m ≈
1
3
, Coulomb m = 0.

◮ This system involves no time derivatives so the semidiscrete form represents an
algebraic constraint to the DAE formulated below. The weak form of the velocity
block of the Newton step is: find (u,p) such that

∫

Ω
Dv :

[

η1 + η′Dw ⊗ Dw
]

:Du − p∇· v − q∇·u = −v ·F (w) ∀(v ,q)

which has the indefinite matrix form
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Standard preconditioners perform poorly on such problems so we use incomplete
factorization with the Schur complement approximated via approximate
commutators, similar to [4].

Arbitrary Lagrange-Eulerian formulation

◮ pseudo-elasticity for mesh location x , displacement w = x − x0

−∇ ·σ = 0 σ = µ
[

2Dw + (∇w)T∇w
]

+ λ tr(∇w)1

surface kinematic condition: (ẋ − u) ·n = qBL, Tσ ·n = 0
◮ heat transport: Θ (enthalpy)

ρ
[ ∂

∂t
Θ + (u − ẋ) · ∇Θ

]

− ∇ ·
[

κ(Θ)∇Θ + qD(Θ)
]

− ηDu :Du = 0

ALE advection Fourier/Fick diffusion Darcy flow Strain heating
◮κ(Θ) and qD(Θ) are very sensitive near Θ = Θ0

◮ formulation as a DAE
The fully coupled system is semidiscretized in space, resulting in a
differential-algebraic system of the form

F (t ,X , Ẋ ) = 0

where X is a multivector containing
u velocity algebraic
p pressure algebraic
x mesh location algebraic in domain, differential at surfaces
Θ enthalpy differential

General Linear methods for DAE and stiff ODE

◮ Common integrators such as linear multistep (LMS) and Runge-Kutta (RK)
methods have deficiencies for stiff problems
◮ Dahlquist’s second barrier: A-stable LMS have order at most 2
◮ Diagonally implicit RK have stage order 1
◮ Singly implicit RK with abscissas outside the step and poor error constants
◮ Fully implicit RK require solving a much larger system
◮ Lack of robust error estimates

◮ General linear methods have recently been developed which avoid many of these
barriers by offering
◮ diagonally implicit computational structure
◮ A- and L-stable
◮ stage order equal to conventional order
◮ asymptotically correct error estimates for the current method and methods of
order one higher than the current method

◮ General linear methods for the DAE

f (t , x , ẋ) = 0

can be written in a tableau similar to Runge-Kutta methods:
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◮ stage values Y = {y1, . . . , ys} computed sequentially be solving f (tn
i , yi, ẏi) = 0

with ẏi written in terms of yi using the top block
◮ Nordsieck vector passed between steps

X = {x1, . . . , xr} = {x ,hẋ ,h2ẍ , . . . }

◮ These methods were implemented for DAE in the TS component of PETSc [1].
◮ orders 1 to 5, extensible by providing the entries of the tableau A U

B V
◮ error estimators and robust step-size adjustment from [3]
◮ adaptive-order adaptive-step controller, plugin architecture for extending

Discussion
◮ efficient high-order spatial discretizations have been applied to each subproblem
◮ the ALE formulation

◮ makes no shallowness assumptions
◮ removes accuracy-limiting features of Eulerian schemes
◮ naturally admits complex boundary conditions including slip
◮ is a “method of lines” discretization suitable for steady-state, bifurcation, and
sensitivity analysis, as well as data assimilation

◮ general linear DAE integrators have several desirable properties that are not
possible with more conventional methods
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