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Newton iteration

I Standard form of a nonlinear system

F (u) = 0

I Iteration

Solve: J(ũ)u = −F (ũ)
Update: ũ+ ← ũ+ u

Example (p-Bratu)

Suppose F is a discretization of

−∇ ·
(
η∇u

)
− λeu − f = 0

η(γ) = (
ε2 + γ

γ0
)

p−2
2 , γ =

1
2
|∇u|2 .

Then J(ũ)u is a discretization of

−∇ ·
(
η∇u+ η′(∇ũ · ∇u)∇ũ

)
− λeũu.



Matrices and Preconditioners

Definition (Matrix)

A matrix is a linear transformation between finite dimensional
vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining it’s action in terms
of entries (usually stored in a sparse format).

Left preconditioning in a Krylov iteration

(P−1A)x = P−1b

{P−1b, (P−1A)P−1b, (P−1A)2P−1b, . . . }

Definition (Preconditioner)

A preconditioner P is a method for constructing a matrix (just a
linear function, not assembled!) P−1 = P(A,Ap) using a matrix A
and extra information Ap, such that the spectrum of P−1A (or
AP−1) is well-behaved.



Domain decomposition
Domain size L, subdomain size H, element size h

Overlapping/Schwarz
I Solve Dirichlet problems on overlapping subdomains

I No overlap: its ∈ O
(

L√
Hh

)
, Overlap: its ∈ O

(
L
H

)
BDDC and FETI-DP

I Neumann problems on subdomains with coarse grid correction

I its ∈ O
(
1 + log H

h

)



Normal preconditioners fail for indefinite problems



Model problem: Stokes system

I Strong form: Find (u, p) ∈ V ′ × P ′ such that

−η∇2u+∇p = f

∇ ·u = 0
I Minimization form: Find u ∈ V which minimizes

I(u) =
∫

Ω
η∇u :∇u− f ·u

subject to
∇ ·u = 0

I Lagrangian:

L(u, p) =
∫

Ω
η∇u :∇u− p∇ ·u− f ·u

I Weak form: Find (u, p) ∈ V × P such that∫
Ω
η∇v :∇u− q∇ ·u− p∇ · v − f · v = 0

for all (v, q) ∈ V ′ × P ′.



Stokes

Weak form
Find (u, p) ∈ V × P such that∫

Ω
η∇v :∇u− q∇ ·u− p∇ · v − f · v = 0

for all (v, q) ∈ V × P .

Matrix

Jx =
[
A BT

B

](
u
p

)
=
(
f
0

)
Block factorization

[
A BT

B

]
=
[

1
BA−1 1

] [
A BT

S

]
=
[
A
B S

] [
1 A−1BT

1

]
where the Schur complement is

S = −BA−1BT .



Block factorization

[
A BT

B

]
=
[

1
BA−1 1

] [
A BT

S

]
=
[
A
B S

] [
1 A−1BT

1

]
where

S = −BA−1BT .

I S is symmetric negative definite if A is SPD and B has full
rank.

I S is dense

I We only need to multiply B,BT with vectors.

I We need a preconditioner for A and S.

I Any definite preconditioner (from last time) can be used for A.

I It’s not obvious how to precondition S, more on that later.



Reduced factorizations are sufficient

Theorem (GMRES convergence)

GMRES applied to
Tx = b

converges in n steps for all right hand sides if there exists a
polynomial of degree n such that pn(A) = 0 and pn(0) = 1. That
is, if the minimum polynomial of A has degree n.

A lower-triangular preconditioner

Left precondition J :

T = P−1J =
[
A
B S

]−1 [
A BT

B

]
=
[

A−1

−S−1BA−1 S−1

] [
A BT

B

]
=
[
1 A−1BT

1

]
Since (T − 1)2 = 0, GMRES converges in at most 2 steps.



Preserving symmetry, for CG or MinRes
Either P−1A must be symmetric or both P−1 and A must be
symmetric

P−1 =
[
A
−S

]−1

T = P−1J =
[
A−1

−S−1

] [
A BT

B

]
=
[

1 A−1BT

−S−1B

]
(
T − 1

2

)2

=
[

1
4 −A

−1BTS−1B
5
4

]
(
T − 1

2

)2

− 1
4

=
[
−A−1BTS−1B

1

]
Now Q = −A−1BTS−1B is a projector (Q2 = Q) so[(

T − 1
2

)2

− 1
4

]2

=
(
T − 1

2

)2

− 1
4

Rearranging, T (T − 1)(T 2 − T − 1) = 0. GMRES converges in at
most 3 iterations.



Preconitioning the Schur complement
I S = −BA−1BT is dense so we can’t form it, but we need
S−1.

Least squares commutator

Suppose B is square and nonsingular. Then

S−1 = −B−TAB−1.

B is not square, replace B−1 with Moore-Penrose pseudoinverse

B† = BT (BBT )−1, (BT )† = (BBT )−1B.

Then
Ŝ−1 = −(BBT )−1BABT (BBT )−1.

I Navier-Stokes: −BBT ∼ (∇ · )∇ is essentially a homogeneous
Poisson operator in the pressure space

I Multigrid on BBT is an effective preconditioner.

I Requires 2 Poisson preconditioners per iteration



Preconditioning the Schur complement

Physics-based commutators

I Unsteady Navier-Stokes with Picard linearization:

A ∼
(

1
α
− η∇2 + w · ∇

)
B ∼ −(∇ · )

I Suppose we have formal commutativity

−∇ ·
(

1
α
− η∇2 + w · ∇

)−1

∇ = (−∇2)
(

1
α
− η∇2 + w · ∇

)−1

I Discrete form

S = −BA−1BT ≈ (−BM−1
u BT )A−1

p Mp = Ŝ

where Mu,Mp are mass matrices, L = −BM−1
u BT a

homogeneous Laplacian in the pressure space. Then

Ŝ−1 = M−1
p ApL

−1

I Stokes: S ∼ (−∇2)(−η∇2)−1 ∼ 1
η , mass matrix scaled by 1

η .



Physics-based preconditioners

Shallow water with stiff gravity wave

h is hydrostatic pressure, u is velocity,
√
gh is fast wave speed

ht − (uh)x = 0

(uh)t + (u2h)x + ghhx = 0

Semi-implicit method

Suppress spatial discretization, discretize in time, implicitly for the
terms contributing to the gravity wave

hn+1 − hn

∆t
+ (uh)n+1

x = 0

(uh)n+1 − (uh)n

∆t
+ (u2h)nx + ghnhn+1

x = 0

Rearrange, eliminating (uh)n+1

hn+1 − hn

∆t
−∆t(ghnhn+1

x )x = −Snx



Delta form

I Preconditioner should work like the Newton step

−F (x) 7→ δx

I Recast semi-implicit method in delta form

δh

∆t
+ (δuh)x = −F0

δuh

∆t
+ ghn(δh)x = −F1

I Eliminate δuh
δh

∆t
−∆t(ghn(δh)x)x = −F0 + (∆tF1)x

I Solve for δh, then evaluate

δuh = −∆t
[
ghn(δh)x − F1

]
I Fully implicit solver

I Is nonlinearly consistent (no splitting error)
I Can be high-order in time
I Leverages existing code (the semi-implicit method)


