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Newton iteration

» Standard form of a nonlinear system
F(u)=0
» lteration
Solve: J(@)u =—F(a)
Update: Uy — U+ u

Example (p-Bratu)
Suppose F' is a discretization of

—V-(nVu)—)\e“—f:O
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Then J(u)u is a discretization of

~V - (nVu+ 7/ (V- Vu) Vi) — Aeu.
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Matrices and Preconditioners
Definition (Matrix)

A matrix is a linear transformation between finite dimensional
vector spaces.

Definition (Forming a matrix)

Forming or assembling a matrix means defining it's action in terms
of entries (usually stored in a sparse format).

Left preconditioning in a Krylov iteration
(P'A)x =P
(P71, (PrA) P~ 1b, (P7LA)* P 1D, ...}

Definition (Preconditioner)

A preconditioner P is a method for constructing a matrix (just a
linear function, not assembled!) P~! = P(A, A,) using a matrix A
and extra information A,, such that the spectrum of P=1A (or
AP~1) is well-behaved.



Domain decomposition
Domain size L, subdomain size H, element size h

Overlapping/Schwarz
» Solve Dirichlet problems on overlapping subdomains
» No overlap: its € (’)(\/%) Overlap: its € O(£)
BDDC and FETI-DP

» Neumann problems on subdomains with coarse grid correction
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Normal preconditioners fail for indefinite problems

Scaling of 3D Stokes solvers
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Model problem: Stokes system

» Strong form: Find (u,p) € V' x P’ such that
—nViu+Vp=f
V-u=0
» Minimization form: Find v € V' which minimizes

I(u):/QnVu:Vuf~u

subject to
V-u=0

» Lagrangian:
L(u,p):/ﬂnVu:Vu—pV-u—f-u

» Weak form: Find (u,p) € V x P such that
/Qan:Vu—qV-u—pV-v—f-v_o

for all (v,q) € V' x P'.



Stokes

Weak form
Find (u,p) € V x P such that

/an:quV-upV-vf-v:O
Q

for all (v,q) € V x P.
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Block factorization

R e | I P

where the Schur complement is

S =-BA BT,



Block factorization

PR D I R

where

S=-BA'BT.
» S is symmetric negative definite if A is SPD and B has full
rank.
S is dense

We only need to multiply B, BT with vectors.
We need a preconditioner for A and S.

Any definite preconditioner (from last time) can be used for A.

vV v v v Y

It's not obvious how to precondition S, more on that later.



Reduced factorizations are sufficient

Theorem (GMRES convergence)

GMRES applied to
Tx=0b

converges in n steps for all right hand sides if there exists a
polynomial of degree n such that p,(A) =0 and p,(0) = 1. That
is, if the minimum polynomial of A has degree n.

A lower-triangular preconditioner
Left precondition J:

-1
I V| A BT
r=r J_[B s| |B

B A1 A BTl 1 A'BT
~|-S7'BA7Y s |B - 1

Since (T'— 1)?> = 0, GMRES converges in at most 2 steps.



Preserving symmetry, for CG or MinRes

Either P~'A must be symmetric or both P~! and A must be

symmetric

S

1 A BT 1 A~BT
T=P J—|: _S- 1:||: _Sle

1 1 — A'BTS™'B
(3=
4
2 —-1pTg-1
T 1N 1 [-A™'B'S™'B
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Now Q = —A~'BTS~!B is a projector (Q? = Q) so

(3 -4 - (r-3) -

Rearranging, T(T — 1)(T? — T — 1) = 0. GMRES converges in at

most 3 iterations.



Preconitioning the Schur complement
» S =—BA BT is dense so we can't form it, but we need
St
Least squares commutator
Suppose B is square and nonsingular. Then
Sl =_BTAB™ !
B is not square, replace B~! with Moore-Penrose pseudoinverse
Bt = BT(BBT)"', (BT)' = (BBT) !B.
Then

A~

St = (BBT)"'BABT(BBT)"!.

» Navier-Stokes: —BBT ~ (V-)V is essentially a homogeneous
Poisson operator in the pressure space

» Multigrid on BBT is an effective preconditioner.

» Requires 2 Poisson preconditioners per iteration



Preconditioning the Schur complement

Physics-based commutators

» Unsteady Navier-Stokes with Picard linearization:
1
A~ (a—nv2+w-v> B~—(V-)

» Suppose we have formal commutativity
1 ! 1 !
-V. <a —nV2+w-V> V= (-V? (a —UV2+w-V>
» Discrete form
S=-BA'B" ~ (-BM,;'B")A;'M, = 5
where M,,, M, are mass matrices, L = —BMJlBT a
homogeneous Laplacian in the pressure space. Then
a—1 —1 —1
ST =M, AL

> Stokes: S ~ (—=V?)(—nV?)~1 ~ % mass matrix scaled by %



Physics-based preconditioners

Shallow water with stiff gravity wave
h is hydrostatic pressure, u is velocity, v/gh is fast wave speed

ht — (uh)m =0
(uh); + (u*h)y 4 ghhy =0

Semi-implicit method

Suppress spatial discretization, discretize in time, implicitly for the

terms contributing to the gravity wave

thrl — pn il
i+ wh)i =0
n+1 _ n
At
Rearrange, eliminating (uh)"*!
thrl — pn

_ npn+ly _ _ gn



Delta form

» Preconditioner should work like the Newton step
—F(z) — oz
» Recast semi-implicit method in delta form

oh
Kt + (5uh)x = —FO
ouh
—_— h"(0h); = —F
At + gh™(0h) 1
» Eliminate duh

oh
NI At(gh"(0h)z)s = —Fo + (AtF1)s

» Solve for 6h, then evaluate
duh = —At[gh"(6h), — Fi]

» Fully implicit solver

» Is nonlinearly consistent (no splitting error)
» Can be high-order in time
» Leverages existing code (the semi-implicit method)



