Dual Order hp version of the finite element method

Jed Brown

VAW, ETH Zürich

2009-02-05

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Why high order?

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

For geophysical flows

- Very large domain
 - Most of the domain is rather boring
 - Accuracy still very important due to constitutive relation (for ice)
 - Optimal: very large high-order elements where the flow is boring
- High aspect ratio
 - Discrete inf-sup stability (Ladyzhenskaja-Babuška-Brezzi)
 - The divergence of the velocity space should span the pressure space in a nice way.

$$\inf_{p \in P} \sup_{\boldsymbol{u} \in \boldsymbol{V}} \frac{\int_{\Omega} p \nabla \cdot \boldsymbol{u}}{\|p\|_0 \|\boldsymbol{u}\|_1} \geq \beta > 0$$

▶ Stability with corners for aspect ratio ρ^{-1} and velocity-pressure pair order (k + 1, k - 1) [Ainsworth and Coggins, 2000]

$$\beta \ge Ck^{-1/2}\min(1,k\sqrt{\rho})$$

Taking $k\approx\rho^{-1/2},~\mu=0$ leads to $\beta\geq C\rho^{1/4},$ better than the usual $\beta\geq C\rho^{1/2}$

For geophysical flows

- Very large domain
 - Most of the domain is rather boring
 - Accuracy still very important due to constitutive relation (for ice)
 - Optimal: very large high-order elements where the flow is boring
- High aspect ratio
 - Discrete inf-sup stability (Ladyzhenskaja-Babuška-Brezzi)
 - The divergence of the velocity space should span the pressure space in a nice way.

$$\inf_{p \in P} \sup_{\boldsymbol{u} \in \boldsymbol{V}} \frac{\int_{\Omega} p \nabla \cdot \boldsymbol{u}}{\|p\|_0 \|\boldsymbol{u}\|_1} \geq \beta > 0$$

▶ Stability with corners for aspect ratio ρ^{-1} and velocity-pressure pair order (k + 1, k - 1) [Ainsworth and Coggins, 2000]

$$\beta \ge Ck^{-1/2}\min(1,k\sqrt{\rho})$$

Taking $k\approx\rho^{-1/2},~\mu=0$ leads to $\beta\geq C\rho^{1/4},$ better than the usual $\beta\geq C\rho^{1/2}$

Also: It's faster!

Weak forms

Strong form (requires two derivatives):
Find u such that

$$-\nabla \cdot \left(\eta \nabla u\right) - e^u - f = 0 \qquad \qquad \text{in } \Omega$$

$$u = g_D$$
 in Γ_D

$$\nabla u \cdot n = g_N$$
 in Γ_N

- Define solution space by values at nodes
- Choose rule for interpolation and differentiation
- Require strong form to be true at nodes
- Weak form (minimum regularity requirements): Find $u \in V_D = \{H^1(\Omega) : \tau(u)|_{\Gamma_D} = g_D\}$ such that $\int_{\Omega} \eta \nabla v \cdot \nabla u - v e^u - f v - \int_{\Gamma_N} g_N v = 0$

for all $v \in V_0$.

- Define solution space as a discrete subspace of V_D
- Choose test space as a discrete subspace of V₀
 - ► Galerkin if same as solution space, Petrov-Galerkin if different
- Choose integration rule

Choosing discrete approximation spaces

- Partition the domain into elements $\{K_e\}$
- Choose a basis \hat{X} for the reference element $\hat{K} = [-1, 1]^d$
- ▶ Basis functions on K_e are $X_e = \hat{X} \circ F_e^{-1}$ where $F_e : \hat{K} \to K_e$
 - Derivatives obtained as

$$\nabla X_e = \Lambda(J_e^{-1}) \circ (\nabla \hat{X}) \circ F_e^{-1}$$

where

- $J_e = \partial F_e(\hat{x}) / \partial \hat{x}$ is the element Jacobian
- $\Lambda(\,\cdot\,)$ is pointwise multiplication
- Choose global degrees of freedom to obtain continuity
 - Might require constraints

Jed: draw pictures!

Nodal *p*-version finite elements, 1-dimensional bases

◆□> ◆□> ◆目> ◆目> ◆目 ● のへで

Multiple dimensions: Tensor product bases

One dimension

$$u(x) = \sum_{i=0}^{p} u_i h_i^p(x) = \sum_{i=0}^{p} u_i \hat{h}_i^p \left(F_e^{-1}(x) \right)$$

Tensor product

$$u(x,y) = \sum_{i,j=0}^{p,q} u_{ij}h_i^p(x)h_j^q(y)$$

=
$$\sum_{i,j=0}^{p,q} u_{ij}\hat{h}_i^p \left(F_{e,x}^{-1}(x,y)\right) \hat{h}_j^q \left(F_{e,y}^{-1}(x,y)\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Quadrature

▶ Write basis functions evaluated at quadrature points as matrix $B = h_i(q_i)$

• Each column is a basis function evaluated at quadrature points • Likewise for derivatives on reference element: $D_x = \partial_x h_i(q_i)$

- Derivatives on physical element become: $D_x^e = \Lambda(J^{-1})D_x$
- In multiple dimensions

$$D_x^e = \Lambda(J_{xx}^{-1})D_x + \Lambda(J_{xy}^{-1})D_y)$$
$$D_y^e = \Lambda(J_{yx}^{-1})D_x + \Lambda(J_{yy}^{-1})D_y)$$

• Integrate on physical element by multiplying weights by |J|

$$\int_{K_e} \phi(F^{-1}(x)) = \sum_{i=0}^{Q} w_i |J(q_i)| \phi(q_i)$$

- Linear and simple nonlinear forms can be integrated exactly using sufficiently high quadrature
- Usually use ordinary Gauss quadrature and don't integrate nonlinear terms exactly (causes aliasing)

Aliasing

 Projection onto 10th degree polynomial space using inexact quadrature.

・ロト ・聞ト ・ヨト ・ヨト

æ

Evaluating weak forms (nonlinear function evaluation)

$$\int_{\Omega} \eta \nabla v \cdot \nabla u - v e^u - f v = 0$$

Sum contributions from each element:

- 1. Obtain values of $u, \nabla u$ at quadrature points using B, D_x^e, D_y^e
- 2. Compute coefficients of $v, \nabla v$
- 3. Weight with $W_e = W\Lambda(|J|)$
- 4. Transform back to test space using B^T , $(D_x^e)^T$, $(D_y^e)^T$ $(D_x^e)^T W_e \eta(\frac{1}{2} |\nabla u|^2) \partial_x u + (D_x^e)^T W_e \eta(\frac{1}{2} |\nabla u|^2) \partial_y u - B^T W_e e^u$

Assembling matrices

Must have a bilinear form

$$b(v,u) = \int_{\Omega} \eta \nabla v \cdot \nabla u + \eta' (\nabla v \cdot \nabla \tilde{u}) (\nabla \tilde{u} \cdot \nabla u) - v e^{\tilde{u}} u$$

Compute element stiffness matrix as

$$A_e = (D_x^e)^T W_e \left(\Lambda(\eta) D_x^e + \Lambda \left(\eta' \nabla \tilde{u} (\nabla \tilde{u})^T \right) D_x^e \right) - B^T W_e \Lambda(e^{\tilde{u}}) B$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Standard method: just multiply these matrices together
 - $\mathcal{O}(p^{3d})$ operations in d dimensions
 - $\mathcal{O}(p^{2d})$ memory

Jed: Show code

Sparse mat-vec and current hardware

memory bandwidth limited

- Current architectures achieve at best 4% (Intel) and 20% (AMD) of peak flops
- Huge amount of architecture-specific effort [Oliker et. al., 2008]
 - explicit threads
 - thread affinity
 - hand-tuned SSE
 - software prefetch
 - TLB blocking
 - compression
 - array padding for cache coherence
- Only 50% to 60% of peak memory bandwidth, due to irregular access and coherence issues
- In practice, about half is achieved by good library code: 2%/10% flops, 25% bandwidth

Naïve high order methods lead to extremely dense matrices

- This matrix comes from first-order discretization of 5³ subelements on each of 2³ elements
- High-order matrix is the sum of 8 dense $6^3 \times 6^3$ matrices

Removing the memory bottleneck: exploiting the tensor product

$$u(x, y, z) = \sum_{i,j,k=0}^{p,q,r} \hat{u}_{ijk} h_i^p(x) h_j^q(y) h_k^r(z)$$
$$= \sum_{i=0}^p \left\{ \sum_{j=0}^q \left[\sum_{k=0}^r \hat{u}_{ijk} h_k^r(z) \right] h_j^q(y) \right\} h_i^p(x)$$

- Quadrature points are also a tensor product
- ▶ B, D_x, D_y become $\mathcal{O}(p^{d+1})$ operations, $\mathcal{O}(p^d)$ memory
 - Extremely regular computational kernel
- Application of the Jacobian is like function evaluation
- ▶ Jacobian needs values of $\eta, \eta', \nabla u$ stored at quadrature points, only $\mathcal{O}(p^d)$ space, computed for free during function evaluation
- Jed: show code

Preconditioning

- Use piecewise (bi-/tri-) linear approximation on subelements
- Assemble matrix for same/similar bilinear form on subelements
- Assembled matrices need not satisfy inf-sup stability conditions, they are only used for preconditioning

Prior work

- Deville and Mund, 1985: Chebyshev collocation
- Fischer, 1997: Spectral element, incompressible flow
- Kim, 2007: Proof of spectral equivalence

••			-	•		-	•	
• •	٥	• •	• •	0	• •	• •	0	•
• •	o	•	• •	o	•	• •	o	•
• •	0	。	• •	0	•	• •	0	•
• •	•		•	•		•	•	→
• •	0	•	• •	0	• •	• •	0	•
• •	0	•	• •	٥	•	• •	0	•
• •	0	。	• •	0	• •	• •	0	•
•••	•	-	•	•		•	•	
• •	0	•	• •	0	• •	• •	0	•
• •	٥	•	• •	٥	• •	• •	٥	•
• •	0	。	• •	0	。	• •	0	•
•-•-	•		•	•		•	•	

Performance

Benchmark problem

3D Poisson problem in $(-1,1)^3$. PETSc, GMRES, ML-5.0/6.2

- Dohp Q5 20³ Hexes / Q5 nodal Legendre elements, preconditioned with Q1 finite elements on the LGL nodes
- ▶ Libmesh Q2 50³ Hexes / Q2 Lagrange elements
- ▶ Dohp Q1 Same 20³ Hexes as above but apply the solver to the Q1 preconditioning matrix
- ▶ Libmesh Q1 100³ Hexes / Q1 Lagrange elements

Event	Dohp Q5	Libmesh Q2	Dohp Q1	Libmesh Q1
Assembly	16.8	26.4	17.1	50.7
MatMult	26.7	28.3	5.08	7.25
PCSetUp	8.3	14.7	8.47	6.9
PCApply	25.8	88.4	13.8	23.2
KSPSolve	58.3	110.7	22.3	31.5
Peak memory (MB)	1194	2300	1044	1700
Krylov it. count	29	21	12	9