
Dual Order hp version of the finite element
method

Jed Brown

VAW, ETH Zürich

2009-02-05

Why high order?

For geophysical flows
I Very large domain

I Most of the domain is rather boring
I Accuracy still very important due to constitutive relation (for

ice)
I Optimal: very large high-order elements where the flow is

boring
I High aspect ratio

I Discrete inf-sup stability (Ladyzhenskaja-Babuška-Brezzi)
I The divergence of the velocity space should span the pressure

space in a nice way.

inf
p∈P

sup
u∈V

R
Ω
p∇·u

‖p‖0 ‖u‖1
≥ β > 0

I Stability with corners for aspect ratio ρ−1 and velocity-pressure
pair order (k + 1, k − 1) [Ainsworth and Coggins, 2000]

β ≥ Ck−1/2 min(1, k
√
ρ)

Taking k ≈ ρ−1/2, µ = 0 leads to β ≥ Cρ1/4, better than the
usual β ≥ Cρ1/2

I Also: It’s faster!

For geophysical flows
I Very large domain

I Most of the domain is rather boring
I Accuracy still very important due to constitutive relation (for

ice)
I Optimal: very large high-order elements where the flow is

boring
I High aspect ratio

I Discrete inf-sup stability (Ladyzhenskaja-Babuška-Brezzi)
I The divergence of the velocity space should span the pressure

space in a nice way.

inf
p∈P

sup
u∈V

R
Ω
p∇·u

‖p‖0 ‖u‖1
≥ β > 0

I Stability with corners for aspect ratio ρ−1 and velocity-pressure
pair order (k + 1, k − 1) [Ainsworth and Coggins, 2000]

β ≥ Ck−1/2 min(1, k
√
ρ)

Taking k ≈ ρ−1/2, µ = 0 leads to β ≥ Cρ1/4, better than the
usual β ≥ Cρ1/2

I Also: It’s faster!

Weak forms
I Strong form (requires two derivatives):

Find u such that

−∇ ·
(
η∇u

)
− eu − f = 0 in Ω

u = gD in ΓD

∇u ·n = gN in ΓN

I Define solution space by values at nodes
I Choose rule for interpolation and differentiation
I Require strong form to be true at nodes

I Weak form (minimum regularity requirements):
Find u ∈ VD = {H1(Ω) : τ(u)|ΓD

= gD} such that∫
Ω
η∇v · ∇u− veu − fv −

∫
ΓN

gNv = 0

for all v ∈ V0.
I Define solution space as a discrete subspace of VD
I Choose test space as a discrete subspace of V0

I Galerkin if same as solution space, Petrov-Galerkin if different

I Choose integration rule

Choosing discrete approximation spaces

I Partition the domain into elements {Ke}
I Choose a basis X̂ for the reference element K̂ = [−1, 1]d

I Basis functions on Ke are Xe = X̂ ◦F−1
e where Fe : K̂ → Ke

I Derivatives obtained as

∇Xe = Λ(J−1
e) ◦ (∇X̂) ◦ F−1

e

where
I Je = ∂Fe(x̂)/∂x̂ is the element Jacobian
I Λ(·) is pointwise multiplication

I Choose global degrees of freedom to obtain continuity
I Might require constraints

Jed: draw pictures!

Nodal p-version finite elements, 1-dimensional bases

Multiple dimensions: Tensor product bases

I One dimension

u(x) =
p∑

i=0

uih
p
i (x) =

p∑
i=0

uiĥ
p
i

(
F−1

e (x)
)

I Tensor product

u(x, y) =
p,q∑

i,j=0

uijh
p
i (x)hq

j(y)

=
p,q∑

i,j=0

uij ĥ
p
i

(
F−1

e,x (x, y)
)
ĥq

j

(
F−1

e,y (x, y)
)

Quadrature
I Write basis functions evaluated at quadrature points as matrix

B = hj(qi)

I Each column is a basis function evaluated at quadrature points
I Likewise for derivatives on reference element: Dx = ∂xhj(qi)

I Derivatives on physical element become: De
x = Λ(J−1)Dx

I In multiple dimensions

De
x = Λ(J−1

xx)Dx + Λ(J−1
xy)Dy)

De
y = Λ(J−1

yx)Dx + Λ(J−1
yy)Dy)

I Integrate on physical element by multiplying weights by |J |∫
Ke

φ(F−1(x)) =
Q∑

i=0

wi |J(qi)|φ(qi)

I Linear and simple nonlinear forms can be integrated exactly
using sufficiently high quadrature

I Usually use ordinary Gauss quadrature and don’t integrate
nonlinear terms exactly (causes aliasing)

Aliasing

I Projection onto 10th degree polynomial space using inexact
quadrature.

Evaluating weak forms (nonlinear function evaluation)

∫
Ω
η∇v · ∇u− veu − fv = 0

Sum contributions from each element:

1. Obtain values of u,∇u at quadrature points using B, De
x, De

y

2. Compute coefficients of v,∇v
3. Weight with We = WΛ(|J |)
4. Transform back to test space using BT , (De

x)T , (De
y)T

(De
x)TWeη(

1
2
|∇u|2)∂xu+ (De

x)TWeη(
1
2
|∇u|2)∂yu−BTWee

u

Assembling matrices

I Must have a bilinear form

b(v, u) =
∫

Ω
η∇v · ∇u+ η′(∇v · ∇ũ)(∇ũ · ∇u)− veũu

I Compute element stiffness matrix as

Ae = (De
x)TWe

(
Λ(η)De

x+Λ
(
η′∇ũ(∇ũ)T

)
De

x

)
−BTWeΛ(eũ)B

I Standard method: just multiply these matrices together
I O(p3d) operations in d dimensions
I O(p2d) memory

Jed: Show code

Sparse mat-vec and current hardware
memory bandwidth limited

I Current architectures achieve at best 4% (Intel) and 20%
(AMD) of peak flops

I Huge amount of architecture-specific effort [Oliker et. al.,
2008]

I explicit threads
I thread affinity
I hand-tuned SSE
I software prefetch
I TLB blocking
I compression
I array padding for cache coherence

I Only 50% to 60% of peak memory bandwidth, due to
irregular access and coherence issues

I In practice, about half is achieved by good library code:
2%/10% flops, 25% bandwidth

Näıve high order methods lead to extremely dense matrices

I This matrix comes from first-order discretization of 53

subelements on each of 23 elements
I High-order matrix is the sum of 8 dense 63 × 63 matrices

Removing the memory bottleneck: exploiting the tensor
product

u(x, y, z) =
p,q,r∑

i,j,k=0

ûijkh
p
i (x)hq

j(y)hr
k(z)

=
p∑

i=0


q∑

j=0

[
r∑

k=0

ûijkh
r
k(z)

]
hq

j(y)

hp
i (x)

I Quadrature points are also a tensor product
I B,Dx, Dy become O(pd+1) operations, O(pd) memory

I Extremely regular computational kernel

I Application of the Jacobian is like function evaluation

I Jacobian needs values of η, η′,∇u stored at quadrature
points, only O(pd) space, computed for free during function
evaluation

Jed: show code

Preconditioning

I Use piecewise (bi-/tri-) linear approximation on subelements

I Assemble matrix for same/similar bilinear form on subelements

I Assembled matrices need not satisfy inf-sup stability
conditions, they are only used for preconditioning

Prior work

I Deville and Mund, 1985:
Chebyshev collocation

I Fischer, 1997: Spectral element,
incompressible flow

I Kim, 2007: Proof of spectral
equivalence

Performance

Benchmark problem

3D Poisson problem in (−1, 1)3. PETSc, GMRES, ML-5.0/6.2

I Dohp Q5 203 Hexes / Q5 nodal Legendre elements,
preconditioned with Q1 finite elements on the LGL nodes

I Libmesh Q2 503 Hexes / Q2 Lagrange elements
I Dohp Q1 Same 203 Hexes as above but apply the solver to the

Q1 preconditioning matrix
I Libmesh Q1 1003 Hexes / Q1 Lagrange elements

Event Dohp Q5 Libmesh Q2 Dohp Q1 Libmesh Q1

Assembly 16.8 26.4 17.1 50.7
MatMult 26.7 28.3 5.08 7.25
PCSetUp 8.3 14.7 8.47 6.9
PCApply 25.8 88.4 13.8 23.2
KSPSolve 58.3 110.7 22.3 31.5

Peak memory (MB) 1194 2300 1044 1700

Krylov it. count 29 21 12 9

